New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean

被引:7
作者
Yang, Zhen-Hang [1 ,2 ]
Tian, Jing-Feng [3 ]
Zhu, Ya-Ru [3 ]
机构
[1] North China Elect Power Univ, Minist Educ, Engn Res Ctr Intelligent Comp Complex Energy Syst, Yonghua St 619, Baoding 071003, Peoples R China
[2] Zhejiang Soc Elect Power, Hangzhou 310014, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Yonghua St 619, Baoding 071003, Peoples R China
关键词
modified Bessel function of the first kind; hyperbolic function; mean; inequality; INEQUALITIES; MONOTONICITY; RATIOS; TERMS;
D O I
10.3390/math8060901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I-v (x) be he modified Bessel function of the first kind of order v. We prove the double inequality root sinht/t cosh(1/q) (qt) < I-0 (t) root sinh t/t cosh(1/p) (pt) hold for t > 0 if and only if p >= 2/3 and q <= ( ln 2) / ln pi. The corresponding inequalities for means improve already known results.
引用
收藏
页数:13
相关论文
共 36 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]   INEQUALITIES FOR AVERAGE VALUES [J].
ALZER, H .
ARCHIV DER MATHEMATIK, 1986, 47 (05) :422-426
[3]   Monotonicity rules in calculus [J].
Anderson, Glen ;
Vamanamurthy, Mavina ;
Vuorinen, Matti .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (09) :805-816
[4]  
[Anonymous], 1975, Math. Mag.
[5]   Bounds for Turanians of modified Bessel functions [J].
Baricz, Arpad .
EXPOSITIONES MATHEMATICAE, 2015, 33 (02) :223-251
[6]   TURAN TYPE INEQUALITIES FOR MODIFIED BESSEL FUNCTIONS [J].
Baricz, Arpad .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) :254-264
[7]  
Biernacki M., 1955, Ann. Univ. Mariae Curie-Skodowska Sect. A, V9, P135
[8]   Amos-type bounds for modified Bessel function ratios [J].
Hornik, Kurt ;
Gruen, Bettina .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) :91-101
[9]   On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral [J].
Hu, Xi-Mei ;
Tian, Jing-Feng ;
Chu, Yu-Ming ;
Lu, Yan-Xia .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[10]   Bounds for functions involving ratios of modified Bessel functions [J].
Kokologiannaki, Chrysi G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) :737-742