Role of artificial intelligence in the care of patients with nonsmall cell lung cancer

被引:58
作者
Rabbani, Mohamad [1 ]
Kanevsky, Jonathan [1 ]
Kafi, Kamran [1 ]
Chandelier, Florent [2 ]
Giles, Francis J. [3 ]
机构
[1] McGill Univ, Ctr Hlth, Montreal, PQ, Canada
[2] Imagia Cybernet, Montreal, PQ, Canada
[3] Dev Therapeut Consortium, Chicago, IL USA
关键词
artificial intelligence; big data; deep learning; lung cancer; machine learning; NSCLC; OF-THE-ART; BIG DATA; ADJUVANT CHEMOTHERAPY; CLASSIFICATION; PREDICTION; DIAGNOSIS; GENE; RADIOMICS; SELECTION; FEATURES;
D O I
10.1111/eci.12901
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundLung cancer is the leading cause of cancer death worldwide. In up to 57% of patients, it is diagnosed at an advanced stage and the 5-year survival rate ranges between 10%-16%. There has been a significant amount of research using machine learning to generate tools using patient data to improve outcomes. MethodsThis narrative review is based on research material obtained from PubMed up to Nov 2017. The search terms include artificial intelligence, machine learning, lung cancer, Nonsmall Cell Lung Cancer (NSCLC), diagnosis and treatment. ResultsRecent studies support the use of computer-aided systems and the use of radiomic features to help diagnose lung cancer earlier. Other studies have looked at machine learning (ML) methods that offer prognostic tools to doctors and help them in choosing personalized treatment options for their patients based on molecular, genetics and histological features. Combining artificial intelligence approaches into health care may serve as a beneficial tool for patients with NSCLC, and this review outlines these benefits and current shortcomings throughout the continuum of care. ConclusionWe present a review of the various applications of ML methods in NSCLC as it relates to improving diagnosis, treatment and outcomes.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Automatic learning-based beam angle selection for thoracic IMRT [J].
Amit, Guy ;
Purdie, Thomas G. ;
Levinshtein, Alex ;
Hope, Andrew J. ;
Lindsay, Patricia ;
Marshall, Andrea ;
Jaffray, David A. ;
Pekar, Vladimir .
MEDICAL PHYSICS, 2015, 42 (04) :1992-2005
[2]   Making sense of big data in health research: Towards an EU action plan [J].
Auffray, Charles ;
Balling, Rudi ;
Barroso, Ines ;
Bencze, Laszlo ;
Benson, Mikael ;
Bergeron, Jay ;
Bernal-Delgado, Enrique ;
Blomberg, Niklas ;
Bock, Christoph ;
Conesa, Ana ;
Del Signore, Susanna ;
Delogne, Christophe ;
Devilee, Peter ;
Di Meglio, Alberto ;
Eijkemans, Marinus ;
Flicek, Paul ;
Graf, Norbert ;
Grimm, Vera ;
Guchelaar, Henk-Jan ;
Guo, Yi-Ke ;
Gut, Ivo Glynne ;
Hanbury, Allan ;
Hanif, Shahid ;
Hilgers, Ralf-Dieter ;
Honrado, Angel ;
Hose, D. Rod ;
Houwing-Duistermaat, Jeanine ;
Hubbard, Tim ;
Janacek, Sophie Helen ;
Karanikas, Haralampos ;
Kievits, Tim ;
Kohler, Manfred ;
Kremer, Andreas ;
Lanfear, Jerry ;
Lengauer, Thomas ;
Maes, Edith ;
Meert, Theo ;
Mueller, Werner ;
Nickel, Dorthe ;
Oledzki, Peter ;
Pedersen, Bertrand ;
Petkovic, Milan ;
Pliakos, Konstantinos ;
Rattray, Magnus ;
Redon i Mas, Josep ;
Schneider, Reinhard ;
Sengstag, Thierry ;
Serra-Picamal, Xavier ;
Spek, Wouter ;
Vaas, Lea A. I. .
GENOME MEDICINE, 2016, 8
[3]   Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data [J].
Auperin, A. ;
Le Chevalier, T. ;
Le Pechoux, C. ;
Pignon, J. P. ;
Tribodet, H. ;
Burdett, S. ;
Stewart, L. A. ;
Tierney, J. F. ;
Stephens, R. J. ;
Arriagada, R. ;
Higgins, J. P. ;
Johnson, D. H. ;
van Meerbeeck, J. ;
Parmar, M. K. B. ;
Souhami, R. L. ;
Bergman, B. ;
Dautzenberg, B. ;
Douillard, J. Y. ;
Dunant, A. ;
Endo, C. ;
Girling, D. J. ;
Imaizumi, M. ;
Kato, H. ;
Keller, S. M. ;
Kimura, H. ;
Knuuttila, A. ;
Kodama, K. ;
Komaki, R. ;
Kris, M. G. ;
Lad, T. ;
Mineo, T. ;
Park, J. H. ;
Piantadosi, S. ;
Pyrhonen, S. ;
Rosell, R. ;
Scagliotti, G. V. ;
Seymour, L. W. ;
Shepherd, F. A. ;
Spiro, S. G. ;
Strauss, G. M. ;
Sylvester, R. ;
Tada, H. ;
Tanaka, F. ;
Torri, V. ;
Wada, H. ;
Waller, D. ;
Xu, G. C. .
LANCET, 2010, 375 (9722) :1267-1277
[4]   Big Data and machine learning in radiation oncology: State of the art and future prospects [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Burgun, Anita .
CANCER LETTERS, 2016, 382 (01) :110-117
[5]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[6]   Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: An example for non-small cell lung cancer [J].
Chen, Yen-Chen ;
Chang, Yo-Cheng ;
Ke, Wan-Chi ;
Chiu, Hung-Wen .
JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 56 :1-7
[7]   Radiomic phenotype features predict pathological response in non-small cell lung cancer [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Narayan, Vivek ;
Hou, Ying ;
Grossmann, Patrick ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2016, 119 (03) :480-486
[8]  
Cruz JA, 2006, CANCER INFORM, V2, P59
[9]   Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care [J].
Djuric, Ugljesa ;
Zadeh, Gelareh ;
Aldape, Kenneth ;
Diamandis, Phedias .
NPJ PRECISION ONCOLOGY, 2017, 1
[10]   Multitargeted anti-angiogenic agents and NSCLC: Clinical update and future directions [J].
Ellis, Peter M. ;
Al-Saleh, Khalid .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2012, 84 (01) :47-58