Iq-Calculus and Iq-Hermite-Hadamard inequalities for interval-valued functions

被引:9
作者
Lou, Tianyi [1 ]
Ye, Guoju [1 ]
Zhao, Dafang [2 ]
Liu, Wei [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Peoples R China
[2] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
基金
湖北省教育厅重点项目;
关键词
Interval-valued functions; Iq-Derivative; Iq-Integral; Iq-Hermite-Hadamard inequalities; 26D15; 26E25; 26A33; QUANTUM INTEGRAL-INEQUALITIES; FRACTIONAL Q-INTEGRALS; CONVEX;
D O I
10.1186/s13662-020-02902-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the Iq-derivative and Iq-integral for interval-valued functions and give their basic properties. As a promotion of q-Hermite-Hadamard inequalities, we also give the Iq-Hermite-Hadamard inequalities for interval-valued functions. At the same time, we give some examples to illustrate the results.
引用
收藏
页数:22
相关论文
共 38 条
[1]   A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems [J].
Abdeljawad, Thabet ;
Alzabut, Jehad ;
Baleanu, Dumitru .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[2]   Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) :4682-4688
[3]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[4]   New Existence Results for Nonlinear Fractional Differential Equations with Three-Point Integral Boundary Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[5]   Boundary Value Problems for q-Difference Inclusions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[6]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[7]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[8]  
[Anonymous], 2000, HIST Q CALCULUS NEW
[9]   Fractional q-calculus on a time scale [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) :333-344
[10]   Variational q-calculus [J].
Bangerezako, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :650-665