An automatic feeding system with a linear piezoelectric actuator, driving circuit and position sensors

被引:4
作者
Jiang, Yi-Bin [1 ]
Wang, Yu-Jen [1 ]
Lin, Guan-Long [1 ]
Weng, Chien-Erh [2 ]
Lu, Wen-Hsien [3 ,4 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung, Taiwan
[2] Natl Kaohsiung Marine Univ, Dept Elect Commun Engn, Kaohsiung, Taiwan
[3] Kaohsiung Vet Gen Hosp, Dept Pediat, Kaohsiung, Taiwan
[4] Natl Yang Ming Univ, Taipei, Taiwan
来源
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS | 2018年 / 24卷 / 04期
关键词
ULTRASONIC MOTORS; TRACKING; MODE;
D O I
10.1007/s00542-017-3580-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To smoothly drive an electron microscope sampling container, we designed a novel stage that includes a piezoelectric actuator to achieve an automatic feeding system for microfluidic sampling processes, utilizing capillary action. The capacitive sensor measures the capacitance value that is used to identify the distance between the sample container and microfluidic samples; according to this value, the microcontroller adjusts the velocity of the piezoelectric actuator through pulse-width modulation and the microstepping motion is realized. We developed the automatic feeding system from this concept by using a linear piezoelectric actuator, a driving circuit, and a position-sensing integrated circuit. When the driving signal was at 100% duty ratio, the velocity of the sampling container achieved to 72 mm/s. To slowly approach liquid sample, driving the actuator at 5% duty cycle, the microstepping resolution was 1 A mu m. Moreover, a driving circuit for the piezoelectric actuator involving a phase-locked loop was developed to automatically track the resonance frequency of the piezoelectric actuator.
引用
收藏
页码:1909 / 1917
页数:9
相关论文
共 19 条
[1]  
Analog Devices, 2007, ULTR POW 2 CHANN CAP
[2]   A linear ultrasonic motor using the first longitudinal and the fourth bending mode [J].
Bein, T ;
Breitbach, EJ ;
Uchino, K .
SMART MATERIALS & STRUCTURES, 1997, 6 (05) :619-627
[3]  
Ben-Yaakov S, 2002, IEEE POWER ELECTRON, P657, DOI 10.1109/PSEC.2002.1022528
[4]   Adaptive Control of Ultrasonic Motors Using the Maximum Power Point Tracking Method [J].
Flueckiger, Markus ;
Fernandez, Jose M. ;
Perriard, Yves .
2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, :1823-1826
[5]   Tracking control of a piezoceramic actuator [J].
Ge, P ;
Jouaneh, M .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1996, 4 (03) :209-216
[6]  
Li BY, 2012, IEEE INT C AUTOMAT L, P448, DOI 10.1109/ICAL.2012.6308248
[7]   Design and experimental performances of a piezoelectric linear actuator by means of lateral motion [J].
Li, Jianping ;
Zhou, Xiaoqin ;
Zhao, Hongwei ;
Shao, Mingkun ;
Hou, Pengliang ;
Xu, Xiuquan .
SMART MATERIALS AND STRUCTURES, 2015, 24 (06)
[8]   Recurrent wavelet-based Elman neural network control for multi-axis motion control stage using linear ultrasonic motors [J].
Lin, F. -J. ;
Kung, Y. -S. ;
Chen, S. -Y. ;
Liu, Y. -H. .
IET ELECTRIC POWER APPLICATIONS, 2010, 4 (05) :314-332
[9]  
Micrel, 2008, DUAL 1 5A PEAK LOW S
[10]   Self-tuned driving of piezoelectric actuators - The case of ultrasonic motors [J].
Pons, J. L. ;
Ochoa, P. ;
Villegas, M. ;
Fernandez, J. F. ;
Rocon, E. ;
Moreno, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) :4163-4167