Identification of two coefficients with data of one component for a nonlinear parabolic system

被引:17
作者
Cristofol, Michel [1 ]
Gaitan, Patricia [1 ]
Ramoul, Hichem [2 ]
Yamamoto, Masahiro [3 ]
机构
[1] Lab Anal, F-13453 Marseille, France
[2] Univ Badji Mokhtar, Dept Math, LMA, Annaba 23000, Algeria
[3] Univ Tokyo, Dept Math, Meguro Ku, Tokyo 153, Japan
关键词
parabolic systems; inverse problem; Carleman estimate; Lipschitz stability estimate; INVERSE PROBLEM; GLOBAL UNIQUENESS; TERM;
D O I
10.1080/00036811.2011.583240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a nonlinear parabolic system with two components and prove a stability estimate of Lipschitz type in determining two coefficients of the system by data of only one component. The main idea for the proof is a Carleman estimate.
引用
收藏
页码:2073 / 2081
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[2]   A new Carleman inequality for parabolic systems with a single observation and applications [J].
Benabdallah, Assia ;
Cristofol, Michel ;
Gaitan, Patricia ;
de Teresa, Luz .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) :25-29
[3]   Inverse problem for a parabolic system with two components by measurements of one component [J].
Benabdallah, Assia ;
Cristofol, Michel ;
Gaitan, Patricia ;
Yamamoto, Masahiro .
APPLICABLE ANALYSIS, 2009, 88 (05) :683-709
[4]   Stable determination of a semilinear term in a parabolic equation [J].
Choulli, M ;
Ouhabaz, EM ;
Yamamoto, M .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (03) :447-462
[5]  
Cristofol M., COMP REND ACAD UNPUB
[6]  
Cristofol M., 2011, COMMU PURE IN PRESS
[7]   Inverse problems for a 2x2 reaction-diffusion system using a Carleman estimate with one observation [J].
Cristofol, Michel ;
Gaitan, Patricia ;
Ramoul, Hichem .
INVERSE PROBLEMS, 2006, 22 (05) :1561-1573
[8]   UNICITY IN AN INVERSE PROBLEM FOR AN UNKNOWN REACTION TERM IN A REACTION DIFFUSION EQUATION [J].
DUCHATEAU, P ;
RUNDELL, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 59 (02) :155-164
[9]   Global uniqueness and Holder stability for recovering a nonlinear source term in a parabolic equation [J].
Egger, H ;
Engl, HW ;
Klibanov, MV .
INVERSE PROBLEMS, 2005, 21 (01) :271-290
[10]   Global Carleman inequalities for parabolic systems and applications to controllability [J].
Fernandez-Cara, Enrique ;
Guerrero, Sergio .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (04) :1395-1446