The Capacity and Durability of Amorphous Silicon Nanotube Thin Film Anode for Lithium Ion Battery Applications

被引:11
作者
Carreon, Maria L. [1 ]
Thapa, Arjun K.
Jasinski, Jacek B.
Sunkara, Mahendra K.
机构
[1] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA
基金
美国国家科学基金会;
关键词
ALLOY ANODES; NANOWIRES; ELECTRODE; PERFORMANCE; INSERTION; STORAGE; EXTRACTION; PARTICLES; COMPOSITE; LIFE;
D O I
10.1149/2.0031510eel
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this communication, we report that a silicon nanotube thin film electrode with 0.6 mg loading exhibited an initial discharge capacity of 4766 mAh g(-1) and retained about 3400 mAh g(-1) after 20.cycles at 100 mA g(-1) rate. The silicon nanotube thin film samples with thicknesses ranging from 10-28 microns were prepared using silicon deposition on bulk produced zinc oxide nanowire films and subsequent removal of zinc oxide cores. The developed silicon nanostructures exhibit tubular geometry with both open ends. The nanotubes with thin walls are shown to accommodate large volume changes with lithiation and exhibit stable capacity retention. The presence of hydrogenated nanocrystalline silicon (nc-Si:H) is shown to be essential for the silicon nanotube thin film performance for lithium ion battery applications. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
引用
收藏
页码:A124 / A128
页数:5
相关论文
共 32 条
[1]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[2]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[5]   An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries [J].
Chen, L. B. ;
Xie, J. Y. ;
Yu, H. C. ;
Wang, T. H. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2009, 39 (08) :1157-1162
[6]   The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)
[7]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[8]  
Dahn J., 2004, J POWER SOURCES, V151, pA838
[9]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197
[10]   ELECTRONIC CONDUCTIVITY OF HYDROGENATED NANOCRYSTALLINE SILICON FILMS [J].
HU, GY ;
OCONNELL, RF ;
HE, YL ;
YU, MB .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (06) :3945-3948