MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF NONRESONANT SINGULAR BOUNDARY-VALUE PROBLEMS

被引:0
作者
Liu, Yansheng [1 ]
Yan, Baoqiang [1 ]
机构
[1] Shandong Normal Univ, Dept Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonresonance; singular boundary-value problem; cone; positive solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a specially constructed cone and the fixed point index theory, this paper shows the existence of multiple positive solutions for a class of nonresonant singular boundary-value problem of second-order differential equations. The nonexistence of positive solution is also studied.
引用
收藏
页数:11
相关论文
共 12 条
[1]   Nonlinear superlinear singular and nonsingular second order boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (01) :60-95
[2]  
Guo D., 1988, NONLINEAR PROBLEMS A
[3]   Existence of multiple positive solutions of singular boundary value problems [J].
Ha, KS ;
Lee, YH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (08) :1429-1438
[4]  
Hartman P., 1982, Ordinary differential equations, V2
[5]   Positive solutions of semilinear differential equations with singularities [J].
Lan, K ;
Webb, JRL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (02) :407-421
[6]   Twin solutions to singular semipositone problems [J].
Liu, YS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) :248-260
[7]   Singular Dirichlet boundary value problems .1. Superlinear and nonresonant case [J].
ORegan, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (02) :221-245
[8]  
Taliaferro S. D., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P897, DOI 10.1016/0362-546X(79)90057-9
[9]  
Wei Z. L., 1999, CHINESE ANN MATH, V20, P543
[10]   Positive solutions of nonresonant singular boundary value problem of second order differential equations [J].
Wei, ZL ;
Pang, CC .
NAGOYA MATHEMATICAL JOURNAL, 2001, 162 :127-148