Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants

被引:62
作者
Sakakibara, Keita [1 ]
Moriki, Yoshihito [1 ]
Yano, Hiroyuki [2 ]
Tsujii, Yoshinobu [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[2] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Kyoto 6110011, Japan
关键词
polymer dispersant; cellulose nanofiber; nanocomposite; diblock copolymer; interfacial strength; dispersion; POLYMER-GRAFTED-NANOPARTICLES; MICROFIBRILLATED CELLULOSE; ELASTIC-MODULUS; ISOTACTIC POLYPROPYLENE; RADICAL POLYMERIZATION; CRYSTALLINE REGIONS; SURFACE; COMPOSITES; WHISKERS; MATRIX;
D O I
10.1021/acsami.7b13963
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cellulose nanofibers (CNFs) hold great potential as sustainable reinforcement fillers with excellent mechanical, thermal, and chemical properties. However, in polyolefin nanocomposite materials, the rational control of dispersion and the improvement of interfacial strength remain challenging. Herein we propose the tuning of the interface between CNF and high-density polyethylene by the design of polymer dispersants on the basis of surface free energy and the glass transition temperature. The former is related to the wettability against the polymer matrix and is therefore critical to the dispersion of CNF whereas the latter is related to the interfacial strength between CNF and HDPE. As a result of this investigation, we discovered a suitable dispersant for. CNFs, poly(dicyclopentenyloxyethyl methacrylate)-block-poly(2-hydroxyethyl methacrylate), which played a pivotal role in achieving both a uniform dispersion of GNP and greatly improved mechanical properties, including a 4-fold increase of the Young's modulus over that of neat HDPE with 10 wt % CNF loading.
引用
收藏
页码:44079 / 44087
页数:9
相关论文
共 58 条
[1]   Obtaining cellulose nanofibers with a uniform width of 15 nm from wood [J].
Abe, Kentaro ;
Iwamoto, Shinichiro ;
Yano, Hiroyuki .
BIOMACROMOLECULES, 2007, 8 (10) :3276-3278
[2]   "Gel-like" Mechanical Reinforcement in Polymer Nanocomposite Melts [J].
Akcora, Pinar ;
Kumar, Sanat K. ;
Moll, Joseph ;
Lewis, Sarah ;
Schadler, Linda S. ;
Li, Yu ;
Benicewicz, Brian C. ;
Sandy, Alec ;
Narayanan, Suresh ;
Illavsky, Jan ;
Thiyagarajan, Pappannan ;
Colby, Ralph H. ;
Douglas, Jack F. .
MACROMOLECULES, 2010, 43 (02) :1003-1010
[3]  
Brandrup J., 1999, Polymer Handbook, VII
[4]  
Bréchet Y, 2001, ADV ENG MATER, V3, P571, DOI 10.1002/1527-2648(200108)3:8<571::AID-ADEM571>3.0.CO
[5]  
2-M
[6]   Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites [J].
Cheng, Shiwang ;
Bocharova, Vera ;
Belianinov, Alex ;
Xiong, Shaomin ;
Kisliuk, Alexander ;
Somnath, Suhas ;
Holt, Adam P. ;
Ovchinnikova, Olga S. ;
Jesse, Stephen ;
Martin, Halie ;
Etampawala, Thusitha ;
Dadmun, Mark ;
Sokolov, Alexei P. .
NANO LETTERS, 2016, 16 (06) :3630-3637
[7]   Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior [J].
Chevigny, Chloe ;
Dalmas, Florent ;
Di Cola, Emanuela ;
Gigmes, Didier ;
Bertin, Denis ;
Boue, Francois ;
Jestin, Jacques .
MACROMOLECULES, 2011, 44 (01) :122-133
[8]   "Green polyethylene" and curaua cellulose nanocrystal based nanocomposites: Effect of vegetable oils as coupling agent and processing technique [J].
de Castro, Daniele Oliveira ;
Frollini, Elisabete ;
Ruvolo-Filho, Adhemar ;
Dufresne, Alain .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2015, 53 (14) :1010-1019
[9]   Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites [J].
de Menezes, Aparecido Junior ;
Siqueira, Gilberto ;
Curvelo, Antonio A. S. ;
Dufresne, Alain .
POLYMER, 2009, 50 (19) :4552-4563
[10]   MECHANICAL-PROPERTIES OF CORONA-MODIFIED CELLULOSE POLYETHYLENE COMPOSITES [J].
DONG, S ;
SAPIEHA, S ;
SCHREIBER, HP .
POLYMER ENGINEERING AND SCIENCE, 1993, 33 (06) :343-346