The Traveling Salesman Problem in Bounded Degree Graphs

被引:30
作者
Bjorklund, Andreas [1 ]
Husfeldt, Thore [2 ]
Kaski, Petteri [3 ,4 ]
Koivisto, Mikko [3 ,4 ]
机构
[1] Lund Univ, Dept Comp Sci, SE-22100 Lund, Sweden
[2] IT Univ Copenhagen, DK-2300 Copenhagen S, Denmark
[3] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
[4] Helsinki Inst Informat Technol, Helsinki, Finland
基金
芬兰科学院; 瑞典研究理事会;
关键词
Counting; dynamic programming; inclusion-exclusion; permanent; Shearer's entropy lemma; traveling salesman problem; trimming;
D O I
10.1145/2151171.2151181
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the traveling salesman problem in bounded-degree graphs can be solved in time O((2 - epsilon)(n)), where epsilon > 0 depends only on the degree bound but not on the number of cities, n. The algorithm is a variant of the classical dynamic programming solution due to Bellman, and, independently, Held and Karp. In the case of bounded integer weights on the edges, we also give a polynomial-space algorithm with running time O(( 2 - epsilon)(n)) on bounded-degree graphs. In addition, we present an analogous analysis of Ryser's algorithm for the permanent of matrices with a bounded number of nonzero entries in each column.
引用
收藏
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 2001, Introduction to Graph Theory
[2]  
Applegate David L, 2006, TRAVELING SALESMAN P
[3]   A permanent algorithm with exp[Ω(n1/3/2 ln n)] expected speedup for 0-1 matrices [J].
Bax, E ;
Franklin, J .
ALGORITHMICA, 2002, 32 (01) :157-162
[4]   DYNAMIC PROGRAMMING TREATMENT OF TRAVELLING SALESMAN PROBLEM [J].
BELLMAN, R .
JOURNAL OF THE ACM, 1962, 9 (01) :61-&
[5]  
Bellman Richard., 1960, Proceedings of Symposia in Applied Mathematics, V10
[6]  
Björklund A, 2008, LECT NOTES COMPUT SC, V5125, P198, DOI 10.1007/978-3-540-70575-8_17
[7]  
Björklund A, 2008, STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, P85
[8]   SOME INTERSECTION-THEOREMS FOR ORDERED SETS AND GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL ;
FRANKL, P ;
SHEARER, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (01) :23-37
[9]  
Eppstein David, 2007, Journal of Graph Algorithms and Applications, V11, P61, DOI 10.7155/jgaa.00137
[10]  
Gebauer H., 2008, P 4 WORKSH AN ALG CO