Brain Tumour Segmentation Using Probabilistic U-Net

被引:12
作者
Savadikar, Chinmay [1 ]
Kulhalli, Rahul [1 ]
Garware, Bhushan [1 ]
机构
[1] Persistent Syst Ltd, Pune, Maharashtra, India
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II | 2021年 / 12659卷
关键词
Brain Tumour Segmentation; UNet; Probabilistic UNet; Deep learning;
D O I
10.1007/978-3-030-72087-2_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe our approach towards the segmentation task of the BRATS 2020 challenge. We use the Probabilistic UNet to explore the effect of sampling different segmentation maps, which may be useful to experts when the opinions of different experts vary. We use 2D segmentation models and approach the problem in a slice-by-slice manner. To explore the possibility of designing robust models, we use self attention in the UNet, and the prior and posterior networks, and explore the effect of varying the number of attention blocks on the quality of the segmentation. Our model achieves Dice scores of 0.81898 on Whole Tumour, 0.71681 on Tumour Core, and 0.68893 on Enhancing Tumour on the Validation data, and 0.7988 on Whole Tumour, 0.7771 on Tumour Core, and 0.7249 on Enhancing Tumour on the Testing data. Our code is available at https://github.com/rahulkulhalli/BRATS2020.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 14 条
[1]  
Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, DOI 10.48550/ARXIV.1811.02629]
[2]  
Bakas Spyridon, 2017, TCIA
[3]  
Bakas Spyridon, 2017, TCIA
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]  
Gal Y, 2016, PR MACH LEARN RES, V48
[6]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[7]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[8]  
Kingma DP, 2014, ADV NEUR IN, V27
[9]  
Kohl SAA, 2018, ADV NEUR IN, V31
[10]   Leveraging uncertainty information from deep neural networks for disease detection [J].
Leibig, Christian ;
Allken, Vaneeda ;
Ayhan, Murat Seckin ;
Berens, Philipp ;
Wahl, Siegfried .
SCIENTIFIC REPORTS, 2017, 7