THE VARIETY OF SEMIRINGS GENERATED BY DISTRIBUTIVE LATTICES AND FINITE FIELDS

被引:3
|
作者
Shao, Yong [1 ]
Crvenkovic, Sinisa [2 ]
Mitrovic, Melanija [3 ]
机构
[1] Northwest Univ, Dept Math, Xian, Peoples R China
[2] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
[3] Univ Nis, Fac Mech Engn, Nish, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2014年 / 95卷 / 109期
基金
中国博士后科学基金;
关键词
finite field; distributive lattice; subdirectly irreducible; variety; SUBDIRECT PRODUCTS; PRIMITIVE CLASSES; ARITHMETIC RINGS;
D O I
10.2298/PIM1409101S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A semiring variety is d-semisimple if it is generated by the distributive lattice of order two and a finite number of finite fields. A d-semisimple variety V = HSP{B-2,F-1,..., F-k} plays the main role in this paper. It will be proved that it is finitely based, and that, up to isomorphism, the two-element distributive lattice B-2 and all subfields of F-1,... F-k, are the only subdirectly irreducible members in it.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 50 条
  • [31] Evolution on distributive lattices
    Beerenwinkel, Niko
    Eriksson, Nicholas
    Sturmfels, Bernd
    JOURNAL OF THEORETICAL BIOLOGY, 2006, 242 (02) : 409 - 420
  • [32] Some Characterizations of Distributive Lattice of Inverse Semirings
    Zhu, Xiaofeng
    Zhou, Yuanlan
    Xiong, Wenting
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (05) : 903 - 910
  • [33] Computability of Distributive Lattices
    N. A. Bazhenov
    A. N. Frolov
    I. Sh. Kalimullin
    A. G. Melnikov
    Siberian Mathematical Journal, 2017, 58 : 959 - 970
  • [34] Distributive residuated lattices
    Liviu-Constantin, Holdon
    Luisa-Maria, Nitu
    Gilena, Chiriac
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2012, 39 (01): : 100 - 109
  • [35] Idempotent matrix lattices over distributive lattices
    Kumarov V.G.
    Journal of Mathematical Sciences, 2008, 155 (6) : 877 - 893
  • [36] Duality for Bi-Algebraic Lattices Belonging to the Variety of (0,1)-Lattices Generated by the Pentagon
    Dziobiak, W.
    Schwidefsky, M. V.
    ALGEBRA AND LOGIC, 2024, 63 (02) : 114 - 140
  • [37] AFFINE COMPLETE DISTRIBUTIVE LATTICES
    PLOSCICA, M
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1994, 11 (04): : 385 - 390
  • [38] DISTRIBUTIVE LATTICES OF JACOBSON RINGS
    Shao, Yong
    Crvenkovic, Sinisa
    Mitrovic, Melanija
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 100 (114): : 87 - 93
  • [39] Separation in distributive congruence lattices
    Ploscica, M
    ALGEBRA UNIVERSALIS, 2003, 49 (01) : 1 - 12
  • [40] A Cayley theorem for distributive lattices
    Chajda, Ivan
    Laenger, Helmut
    ALGEBRA UNIVERSALIS, 2009, 60 (03) : 365 - 367