Finite-size scaling of entanglement entropy at the Anderson transition with interactions

被引:20
作者
Zhao, An [1 ]
Chu, Rui-Lin [1 ,2 ]
Shen, Shun-Qing [1 ]
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 20期
关键词
QUANTUM RENORMALIZATION-GROUPS; ONE-DIMENSION; LOCALIZATION; DELOCALIZATION; DIFFUSION; SYSTEMS; ABSENCE;
D O I
10.1103/PhysRevB.87.205140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Anderson transition with interactions in one dimension from the perspective of quantum entanglement. Extensive numerical calculations of the entanglement entropy (EE) of the systems are carried out through the density matrix renormalization group algorithm. We demonstrate that the EE can be used for the finite-size scaling (FSS) to characterize the Anderson transition in both noninteracting and interacting systems. From the FSS analysis we can obtain a precise estimate of the critical parameters of the transition. The method can be applied to various one-dimensional models, either interacting or noninteracting, to quantitatively characterize the Anderson transitions.
引用
收藏
页数:5
相关论文
共 35 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]   COMBINED EFFECT OF DISORDER AND INTERACTION ON THE CONDUCTANCE OF A ONE-DIMENSIONAL FERMION SYSTEM [J].
APEL, W ;
RICE, TM .
PHYSICAL REVIEW B, 1982, 26 (12) :7063-7065
[5]   Anderson transition in two-dimensional systems with spin-orbit coupling [J].
Asada, Y ;
Slevin, K ;
Ohtsuki, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (25)
[6]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[7]   Entanglement Entropy in a One-Dimensional Disordered Interacting System: The Role of Localization [J].
Berkovits, Richard .
PHYSICAL REVIEW LETTERS, 2012, 108 (17)
[8]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[9]   Disorder and interactions in one-dimensional systems [J].
Carter, JM ;
MacKinnon, A .
PHYSICAL REVIEW B, 2005, 72 (02)
[10]   Entanglement spectrum of random-singlet quantum critical points [J].
Fagotti, Maurizio ;
Calabrese, Pasquale ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2011, 83 (04)