Computational techniques for parameter estimation of gravitational wave signals

被引:7
作者
Meyer, Renate [1 ]
Edwards, Matthew C. [1 ]
Maturana-Russel, Patricio [1 ,2 ]
Christensen, Nelson [3 ]
机构
[1] Univ Auckland, Dept Stat, Auckland, New Zealand
[2] Auckland Univ Technol, Dept Math Sci, Auckland, New Zealand
[3] Univ Cote Azur, Observ Cote Azur, Artemis, Nice, France
基金
美国国家科学基金会;
关键词
Bayesian inference; Markov chain Monte Carlo; Nested Sampling; parameter estimation; signal processing; GENERAL-RELATIVITY; NEUTRINO BURST; POWER SPECTRA; RADIATION; LIGO; IDENTIFICATION; INFERENCE; BINARIES; PULSARS;
D O I
10.1002/wics.1532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core-collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational-wave background are in the sensitivity band of the ground-based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high-dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer-intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state-of-the-art Bayesian statistical parameter estimation methods will be given for researchers in this cross-disciplinary area of gravitational wave data analysis. This article is categorized under: Applications of Computational Statistics > Signal and Image Processing and Coding Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC) Statistical Models > Time Series Models
引用
收藏
页数:25
相关论文
共 224 条
[81]   Method for estimation of gravitational-wave transient model parameters in frequency-time maps [J].
Coughlin, M. ;
Christensen, N. ;
Gair, J. ;
Kandhasamy, S. ;
Thrane, E. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (16)
[82]   Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning [J].
Coughlin, S. ;
Bahaadini, S. ;
Rohani, N. ;
Zevin, M. ;
Patane, O. ;
Harandi, M. ;
Jackson, C. ;
Noroozi, V. ;
Allen, S. ;
Areeda, J. ;
Coughlin, M. ;
Ruiz, P. ;
Berry, C. P. L. ;
Crowston, K. ;
Katsaggelos, A. K. ;
Lundgren, A. ;
Osterlund, C. ;
Smith, J. R. ;
Trouille, L. ;
Kalogera, V. .
PHYSICAL REVIEW D, 2019, 99 (08)
[83]   Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO [J].
Covas, P. B. ;
Effler, A. ;
Goetz, E. ;
Meyers, P. M. ;
Neunzert, A. ;
Oliver, M. ;
Pearlstone, B. L. ;
Roma, V. J. ;
Schofield, R. M. S. ;
Adya, V. B. ;
Astone, P. ;
Biscoveanu, S. ;
Callister, T. A. ;
Christensen, N. ;
Colla, A. ;
Coughlin, E. ;
Coughlin, M. W. ;
Crowder, S. G. ;
Dwyer, S. E. ;
Eggenstein, H. -B. ;
Hourihane, S. ;
Kandhasamy, S. ;
Liu, W. ;
Lundgren, A. P. ;
Matas, A. ;
McCarthy, R. ;
McIver, J. ;
Mendell, G. ;
Ormiston, R. ;
Palomba, C. ;
Papa, M. A. ;
Piccinni, O. J. ;
Rao, K. ;
Riles, K. ;
Sammut, L. ;
Schlassa, S. ;
Sigg, D. ;
Strauss, N. ;
Tao, D. ;
Thorne, K. A. ;
Thrane, E. ;
Trembath-Reichert, S. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Adams, C. ;
Adhikari, R. X. ;
Ananyeva, A. ;
Appert, S. ;
Arai, K. .
PHYSICAL REVIEW D, 2018, 97 (08)
[84]   Solution to the galactic foreground problem for LISA [J].
Crowder, Jeff ;
Cornish, Neil J. .
PHYSICAL REVIEW D, 2007, 75 (04)
[85]   On-line power spectra identification and whitening for the noise in interferometric gravitational wave detectors [J].
Cuoco, E ;
Calamai, G ;
Fabbroni, L ;
Losurdo, G ;
Mazzoni, M ;
Stanga, R ;
Vetrano, F .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (09) :1727-1751
[86]  
Cuoco E., 2020, ENHANCING GRAVITATIO
[87]   GRAVITATIONAL-WAVES FROM MERGING COMPACT BINARIES - HOW ACCURATELY CAN ONE EXTRACT THE BINARYS PARAMETERS FROM THE INSPIRAL WAVE-FORM [J].
CUTLER, C ;
FLANAGAN, EE .
PHYSICAL REVIEW D, 1994, 49 (06) :2658-2697
[88]   Review of pulsar timing array for gravitational wave research [J].
Dahal, Pravin Kumar .
JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2020, 41 (01)
[89]   Gravitational scattering, post-Minkowskian approximation, and effective-one-body theory [J].
Damour, Thibault .
PHYSICAL REVIEW D, 2016, 94 (10)
[90]   Gravitational wave burst signal from core collapse of rotating stars [J].
Dimmelmeier, Harald ;
Ott, Christian D. ;
Marek, Andreas ;
Janka, H. -Thomas .
PHYSICAL REVIEW D, 2008, 78 (06)