Iminodiacetic acid-functionalized porous polymer for removal of toxic metal ions from water

被引:49
作者
Anito, Dejene Assefa [1 ,2 ]
Wang, Tian-Xiong [1 ,2 ]
Liu, Zhi-Wei [1 ,2 ]
Ding, Xuesong [1 ]
Han, Bao-Hang [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
美国国家科学基金会;
关键词
Iminodiacetic acid; Porous polymer; Adsorption; Heavy metals; Uptake capacity; AQUEOUS-SOLUTION; ORGANIC FRAMEWORKS; ADSORPTION BEHAVIOR; STABILITY-CONSTANTS; MESOPOROUS SILICA; EFFICIENT REMOVAL; SURFACE-AREA; REMEDIATION; CAPTURE; PB(II);
D O I
10.1016/j.jhazmat.2020.123188
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The design of efficient adsorbent with abundant binding sites for heavy metal ions is crucial for developing innovative materials that will remove pollutant metal ions. The high uptake capacity, kinetics, and affinity towards the toxic metals are the key requirements that the materials under invesigation should accomplish. Here we report the synthesis of iminodiacetic acid-functionalized hypercrosslinked polymer (IDA-HCP) for purification of water polluted by toxic metal ions via coordination of carboxylate and amino active sites on the surface of porous polymer. The obtained porous polymer is stable under harsh conditions and the structural features on the polymer work together to help the removal of Pb(II) with 1138 mg g(-1) uptake capacity. In the meanwhile, the IDA-HCP reveals reuseability and very promising capture efficiency not only for Pb2+, but also for Hg2+ and Cd2+ from a mixture of Pb2+, Hg2+, Cd2+, Co2+, Fe3+, Zn2+, Mg2+, and Na+ metal ions. This result gives us confidence that the polymer material can solve the pollution problem caused by various metal ions.
引用
收藏
页数:8
相关论文
共 64 条
[1]   Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water [J].
Adewuyi, YG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (10) :3409-3420
[2]   Selective removal of cesium and strontium using porous frameworks from high level nuclear waste [J].
Aguila, Briana ;
Banerjee, Debasis ;
Nie, Zimin ;
Shin, Yongsoon ;
Ma, Shengqian ;
Thallapally, Praveen K. .
CHEMICAL COMMUNICATIONS, 2016, 52 (35) :5940-5942
[3]   Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water: Development, characterization and application [J].
Ali, Imran ;
Peng, Changsheng ;
Lin, Dichu ;
Saroj, Devendra P. ;
Naz, Iffat ;
Khan, Zahid M. ;
Sultan, Muhammad ;
Ali, Mohsin .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 234 :273-289
[4]   Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer [J].
Alsbaiee, Alaaeddin ;
Smith, Brian J. ;
Xiao, Leilei ;
Ling, Yuhan ;
Helbling, Damian E. ;
Dichtel, William R. .
NATURE, 2016, 529 (7585) :190-U146
[5]   CRITICAL SURVEY OF STABILITY-CONSTANTS OF NTA COMPLEXES [J].
ANDEREGG, G .
PURE AND APPLIED CHEMISTRY, 1982, 54 (12) :2693-2758
[6]   CRITICAL EVALUATION OF STABILITY CONSTANTS OF METAL COMPLEXES OF COMPLEXONES FOR BIOMEDICAL AND ENVIRONMENTAL APPLICATIONS (IUPAC Technical Report) [J].
Anderegg, Giorgio ;
Arnaud-Neu, Francoise ;
Delgado, Rita ;
Felcman, Judith ;
Popov, Konstantin .
PURE AND APPLIED CHEMISTRY, 2005, 77 (08) :1445-1495
[7]   Removal of TcO4- ions from solution: materials and future outlook [J].
Banerjee, Debasis ;
Kim, Dongsang ;
Schweiger, Michael J. ;
Kruger, Albert A. ;
Thallapally, Praveen K. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2724-2739
[8]   Mercury(II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres [J].
Bibby, A ;
Mercier, L .
CHEMISTRY OF MATERIALS, 2002, 14 (04) :1591-1597
[9]   Mercury binding sites in thiol-functionalized mesostructured silica [J].
Billinge, SJL ;
McKimmy, EJ ;
Shatnawi, M ;
Kim, HJ ;
Petkov, V ;
Wermeille, D ;
Pinnavaia, TJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (23) :8492-8498
[10]   ALKALI METAL BINDING BY ETHYLENEDIAMINETETRAACETATE ADENOSINE 5'-TRIPHOSPHATE AND PYROPHOSPHATE [J].
BOTTS, J ;
CHASHIN, A ;
YOUNG, HL .
BIOCHEMISTRY, 1965, 4 (09) :1788-&