Broadband light trapping in nanotextured thin film photovoltaic devices

被引:25
作者
Mennucci, Carlo [1 ]
Muhammad, M. H. [2 ]
Hameed, Mohamed Farhat O. [2 ,3 ,4 ]
Mohamed, Shaimaa A. [2 ,5 ]
Abdelkhalik, Mohamed S. [5 ]
Obayya, S. S. A. [2 ,4 ]
de Mongeot, Francesco Buatier [1 ]
机构
[1] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy
[2] Zewail City Sci & Technol, Ctr Photon & Smart Mat, Giza, Egypt
[3] Univ Sci & Technol, Zewail City Sci & Technol, Nanotechnol Engn Program, Giza, Egypt
[4] Mansoura Univ, Fac Engn, Mansoura, Egypt
[5] Zewail City Sci & Technol, Ctr Nanotechnol, Giza, Egypt
关键词
Light trapping; Photovoltaic; Finite difference time domain; Self-organized; Broadband; Nanostructure; DIELECTRIC SCATTERING PATTERNS; SOLAR-CELLS; NANOWIRE ELECTRODES; NANOSTRUCTURES; MANAGEMENT;
D O I
10.1016/j.apsusc.2018.02.186
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Substrates with engineered roughness are studied with the aim of achieving broadband and omnidirectional photon harvesting in thin film devices. Light coupling across the interfaces of a photonic device is induced by uniaxial pseudo-periodic gratings formed in a self-organised fashion via de-focused ion beam sputtering (IBS). The optical properties of the textured interfaces are assessed both experimentally and numerically using finite difference time domain (FDTD) algorithm, quantitatively demonstrating the optimal geometries which favour broadband diffuse scattering of radiation across the Vis-NIR spectral range. Thin film amorphous silicon solar cells based on the nanostructured patterns have been numerically studied via FDTD to assess absorption enhancement in comparison to flat reference devices, finding a 25% increase of short-circuit current, in good agreement with the experiment. Similar light trapping experiments performed on prototypical solar cells employing a PTB7: PC61BM organic absorber, allow to extend the general validity of the results to a relevant class of materials in the view of photovoltaic applications. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 82
页数:9
相关论文
共 32 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Light Trapping in Solar Cells: Can Periodic Beat Random? [J].
Battaglia, Corsin ;
Hsu, Ching-Mei ;
Soederstroem, Karin ;
Escarre, Jordi ;
Haug, Franz-Josef ;
Charriere, Mathieu ;
Boccard, Mathieu ;
Despeisse, Matthieu ;
Alexander, Duncan T. L. ;
Cantoni, Marco ;
Cui, Yi ;
Ballif, Christophe .
ACS NANO, 2012, 6 (03) :2790-2797
[3]  
Battaglia C, 2011, NAT PHOTONICS, V5, P535, DOI [10.1038/nphoton.2011.198, 10.1038/NPHOTON.2011.198]
[4]  
Benagli S., 2009, European Photovoltaic Solar Energy Conference proceeding, P2293
[5]   Tunable reflection minima of nanostructured antireflective surfaces [J].
Boden, S. A. ;
Bagnall, D. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[6]   THEORY OF RIPPLE TOPOGRAPHY INDUCED BY ION-BOMBARDMENT [J].
BRADLEY, RM ;
HARPER, JME .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (04) :2390-2395
[7]  
Brongersma ML, 2014, NAT MATER, V13, P451, DOI [10.1038/NMAT3921, 10.1038/nmat3921]
[8]   Transparent Plasmonic Nanowire Electrodes via Self-Organised Ion Beam Nanopatterning [J].
Chiappe, Daniele ;
Toma, Andrea ;
de Mongeot, Francesco Buatier .
SMALL, 2013, 9 (06) :913-919
[9]   Two-Dimensional Crystals: Managing Light for Optoelectronics [J].
Eda, Goki ;
Maier, Stefan A. .
ACS NANO, 2013, 7 (07) :5660-5665
[10]   Light trapping in ultrathin plasmonic solar cells [J].
Ferry, Vivian E. ;
Verschuuren, Marc A. ;
Li, Hongbo B. T. ;
Verhagen, Ewold ;
Walters, Robert J. ;
Schropp, Ruud E. I. ;
Atwater, Harry A. ;
Polman, Albert .
OPTICS EXPRESS, 2010, 18 (13) :A237-A245