Transformer Paper Condition Assessment Using Adaptive Neuro-Fuzzy Inference System Model

被引:0
|
作者
Prasojo, Rahman A. [1 ]
Diwyacitta, K. [1 ]
Suwarno [1 ]
Gumilang, H. [2 ]
机构
[1] Inst Teknol Bandung, Sch Elect Engn & Informat, Bandung, Indonesia
[2] PT PLN Persero Transmisi Jawa Bagian Tengah, Bandung, Indonesia
来源
2017 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS) | 2017年
关键词
ANFIS; Furan; Degree of Polymerization; Paper Insulation; Dissolved Gas Analysis; Dielectric Properties;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the possibility of using Adaptive Neuro Fuzzy Inference System for Power Transformer Paper Condition Assessment. The dielectric characteristics, dissolved gasses, and furan of 108 running transformers is collected. The 2-furaldehyde (2FAL) data is transformed to Degree of Polymerization (DP), and then statistically analysed to get independent variables as the predictor for the transformer paper condition assessment. CO and CO2 are well known as one of the product of cellulose degradation, while interfacial tension, acidity, and color from the oil are statistically correlated with furan. ANFIS (Adaptive Neuro-Fuzzy Inference System) and Multiple Regression (MR) model is built based on the previous statistical analysis, and then the result is evaluated and compared, resulting in better accuracy of ANFIS model. Three different evaluation criteria MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and RMSE (Root Mean Square Error) calculated from ANFIS prediction are lower than those from MR model, with the MAPE of ANFIS model is 15.38%.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [1] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [2] Tweet recommender model using adaptive neuro-fuzzy inference system
    Jain, Deepak Kumar
    Kumar, Akshi
    Sharma, Vibhuti
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 112 : 996 - 1009
  • [3] An accurate optical gain model using adaptive neuro-fuzzy inference system
    Celebi, F. V.
    Altindag, T.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2009, 3 (10): : 975 - 977
  • [4] The core loss estimation of a single phase inverter transformer by using adaptive neuro-fuzzy inference system
    Aslan, Busra
    Balci, Selami
    Kayabasi, Ahmet
    Yildiz, Berat
    MEASUREMENT, 2021, 179
  • [5] PREDICTION OF BEARING FAULT SIZE BY USING MODEL OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Kaplan, Kaplan
    Kuncan, Melih
    Ertunc, H. Metin
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1925 - 1928
  • [6] Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
    Zhang, Hanwen
    Fotouhi, Abbas
    Auger, Daniel J.
    Lowe, Matt
    BATTERIES-BASEL, 2024, 10 (03):
  • [7] Runoff estimation using modified adaptive neuro-fuzzy inference system
    Nath, Amitabha
    Mthethwa, Fisokuhle
    Saha, Goutam
    ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (04) : 545 - 553
  • [8] Smart Sounding Table Using Adaptive Neuro-Fuzzy Inference System
    Unal, Osman
    Akkas, Nuri
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2023, 31 (03): : 273 - 282
  • [9] Adaptive neuro-fuzzy inference system for monitoring the surface condition of polymeric insulators using harmonic content
    Muniraj, C.
    Chandrasekar, S.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2011, 5 (07) : 751 - 759
  • [10] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154