Active magnetoplasmonic split-ring/ring nanoantennas

被引:24
|
作者
Feng, Hua Yu [1 ,2 ]
Luo, Feng [1 ]
Arenal, Raul [3 ,4 ]
Henrard, Luc [5 ,6 ]
Garcia, Fernando [2 ]
Armelles, Gaspar [2 ]
Cebollada, Alfonso [2 ]
机构
[1] IMDEA, Nanosci, Faraday 9,Ciudad Univ Cantoblanco, Madrid 28049, Spain
[2] CSIC, CNM, IMM, PTM, Isaac Newton 8, Madrid 28760, Spain
[3] Univ Zaragoza, INA, LMA, Zaragoza 50018, Spain
[4] Fdn ARAID, Zaragoza 50018, Spain
[5] Univ Namur, Dept Phys, 61 Rue Bruxelles, B-5000 Namur, Belgium
[6] Univ Namur, Res Grp Carbon Nanostruct CARBONNAGe, 61 Rue Bruxelles, B-5000 Namur, Belgium
关键词
DISCRETE-DIPOLE APPROXIMATION; PLASMONIC NANOSTRUCTURES; MAGNETOOPTICAL ACTIVITY; LOW-COST; ROTATION; FABRICATION; ENHANCEMENT; FILM;
D O I
10.1039/c6nr07864h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we present a novel active system, which combines the plasmon resonance enhancement of the magneto-optical activity in magnetoplasmonic nanostructures and the strong electromagnetic field localization of split ring resonators. The structures consist of a gold split ring resonator placed on top of a gold nanoring in the section of which a Co nanodot is inserted. By placing the split ring gap on top of the nanodot, and continuously varying the split ring gap opening, we are able to tune and enhance the electromagnetic field intensity in the Co nanodot, as confirmed experimentally by EELS and numerically using DDA simulation methods. In this way we obtain structures with a magneto-optical activity, which is 3 times larger than that of equivalent magnetoplasmonic rings without a split ring on top. These enhanced performances are due to the better control of the positioning, dimensions, and shape of the different components of the system. Such improvements are achieved using hole-mask colloidal lithography technique combined with multiaxial evaporation of the different materials.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 50 条
  • [1] From plasmonic nanoantennas to split-ring resonators: tuning scattering strength
    Pors, Anders
    Willatzen, Morten
    Albrektsen, Ole
    Bozhevolnyi, Sergey I.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (08) : 1680 - 1687
  • [2] RING SEALS - SPLIT-RING SEALS
    SHEPLER, PR
    MACHINE DESIGN, 1969, 41 (14) : 16 - &
  • [3] SPLIT-RING SEALS
    SHEPLER, PR
    MACHINE DESIGN, 1967, 39 (06) : 18 - &
  • [4] SPLIT-RING SEALS
    不详
    MACHINE DESIGN, 1973, 45 (22) : 58 - 60
  • [5] Gain Incorporated Split-Ring Resonator Structures for Active Metamaterials
    Chaires, Jordan
    Schumerth, David
    Drawdy, Cole
    Yang, Weiguo
    ADVANCES IN OPTOELECTRONICS, 2015, 2015
  • [6] A Novel Millimeter Wave Super Lens Using Split-Ring Resonator and Complementary Split-Ring Resonator
    Moon, Tak Su
    Cho, Choon Sik
    Lee, Jae W.
    Kim, Jaeheung
    2009 34TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, VOLS 1 AND 2, 2009, : 209 - +
  • [7] A Diplexer with a Split-ring Resonator Junction
    Ogbodo, Eugene A.
    Wang, Yi
    Wu, Yun
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 3320 - 3320
  • [8] Tunable Graphene Split-Ring Resonators
    Xing, Qiaoxia
    Wang, Chong
    Huang, Shenyang
    Liu, Tong
    Xie, Yuangang
    Song, Chaoyu
    Wang, Fanjie
    Li, Xuesong
    Zhou, Lei
    Yan, Hugen
    PHYSICAL REVIEW APPLIED, 2020, 13 (04)
  • [9] Electromagnetic modeling of split-ring resonators
    Gurel, Levent
    Unal, Alper
    Ergul, Ozgur
    2006 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-4, 2006, : 1747 - 1749
  • [10] Fabrication and tuning of nanoscale metallic ring and split-ring arrays
    Sheridan, A. K.
    Clark, A. W.
    Glidle, A.
    Cooper, J. M.
    Cumming, D. R. S.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06): : 2628 - 2631