Approximation of the solution set of optimal control problems

被引:0
作者
Donchev, T [1 ]
机构
[1] Univ Architecture & Civil Engn, Dept Math, Sofia 1046, Bulgaria
来源
LARGE-SCALE SCIENTIFIC COMPUTING | 2006年 / 3743卷
关键词
D O I
10.1007/11666806_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate approximation in W-1,W-2 topology of the solution set of a differential inclusion with Kamke Lipschitz right-hand side. The results are then applied to Bolza optimal control problem in form of differential inclusions. Namely it is shown that the optimal solution is the limit of optimal solution of appropriately defined finite dimensional nonlinear programming problems.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 14 条
[1]  
Clarke F., 1998, NONSMOOTH ANAL CONTR
[2]  
Donchev T, 2005, LECT NOTES COMPUT SC, V3401, P266
[3]  
DONCHEV T, 1999, CALCULUS VARIATIONS, P101
[4]   DIFFERENCE-METHODS FOR DIFFERENTIAL-INCLUSIONS - A SURVEY [J].
DONTCHEV, A ;
LEMPIO, F .
SIAM REVIEW, 1992, 34 (02) :263-294
[5]   ERROR-ESTIMATES FOR DISCRETIZED DIFFERENTIAL-INCLUSIONS [J].
DONTCHEV, AL ;
FARKHI, EM .
COMPUTING, 1989, 41 (04) :349-358
[6]   Towards fully discretized differential inclusions [J].
Grammel, G .
SET-VALUED ANALYSIS, 2003, 11 (01) :1-8
[8]  
Lempio F, 1998, BAYREUTHER MATH SCHR, V54, P149
[9]   DISCRETE APPROXIMATIONS AND REFINED EULER-LAGRANGE CONDITIONS FOR NONCONVEX DIFFERENTIAL-INCLUSIONS [J].
MORDUKHOVICH, BS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (03) :882-915
[10]  
MORDUKHOVICH BS, 1988, APPROXIMATION METHOD