Feasible ridge estimator in partially linear models

被引:45
作者
Roozbeh, M. [1 ]
Arashi, M. [2 ]
机构
[1] Semnan Univ, Sch Sci, Dept Math Stat & Comp Sci, Semnan, Iran
[2] Shahrood Univ Technol, Fac Math, Shahrood, Iran
关键词
Linear restrictions; Kernel smoothing; Multicollinearity; Feasible ridge estimator; Partial linear model; MEAN-SQUARE ERROR; REGRESSION;
D O I
10.1016/j.jmva.2012.11.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a partial linear model, some non-stochastic linear restrictions are imposed under a multicollinearity setting. Semiparametric ridge and non-ridge type estimators, in a restricted manifold are defined. For practical use, it is assumed that the covariance matrix of the error term is unknown and thus feasible estimators are replaced and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions, for the superiority of the ridge type estimator over its counterpart, for selecting the ridge parameter k are obtained. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and non-parametric parts. In this regard, kernel smoothing and cross validation methods for estimating the non-parametric function are used. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 20 条
[1]  
BAKSALARY JK, 1990, SANKHYA SER A, V52, P279
[2]   Difference based ridge and Liu type estimators in semiparametric regression models [J].
Duran, Esra Akdeniz ;
Haerdle, Wolfgang Karl ;
Osipenko, Maria .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) :164-175
[3]   SEMIPARAMETRIC ESTIMATES OF THE RELATION BETWEEN WEATHER AND ELECTRICITY SALES [J].
ENGLE, RF ;
GRANGER, CWJ ;
RICE, J ;
WEISS, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (394) :310-320
[4]  
FAREBROTHER RW, 1976, J ROY STAT SOC B MET, V38, P248
[5]   Restricted ridge estimation [J].
Gross, E .
STATISTICS & PROBABILITY LETTERS, 2003, 65 (01) :57-64
[6]  
Hardle W., 2000, CONTR STAT
[7]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[8]   Preliminary test ridge regression estimators with student's t errors and conflicting test-statistics [J].
Kibria, BMG ;
Saleh, AKME .
METRIKA, 2004, 59 (02) :105-124
[9]  
Muller M. T., 2000, THESIS
[10]   Ridge regression methodology in partial linear models with correlated errors [J].
Roozbeh, M. ;
Arashi, M. ;
Niroumand, H. A. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (04) :517-528