Nonlinear Sequential Fractional Boundary Value Problems Involving Generalized ?-Caputo Fractional Derivatives

被引:0
作者
Dien, Nguyen Minh [1 ]
机构
[1] Thu Dau Mot Univ, Fac Educ, Thu Dau Mot, Binh Duong, Vietnam
关键词
Nonlinear differential equations; boundary value problems; fractional derivatives; DIFFERENTIAL-EQUATIONS; INEQUALITIES;
D O I
10.2298/FIL2215047D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study the nonlinear sequential fractional boundary value problems involving generalized psi-Caputo fractional derivatives with nonlocal boundary conditions. We investigate the Green function and some of its properties, from which we obtain a new Lyapunov-type inequality for our problem. A lower bound for the possible eigenvalues of our problem is derived. Furthermore, we apply some properties of the Green function to obtain some existence results for our problem. It is worth mentioning that our results still work with some source functions including singularities.
引用
收藏
页码:5047 / 5058
页数:12
相关论文
共 21 条
  • [1] Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions
    Agarwal, Ravi P.
    Bazighifan, Omar
    Ragusa, Maria Alessandra
    [J]. ENTROPY, 2021, 23 (02) : 1 - 10
  • [2] A Caputo fractional derivative of a function with respect to another function
    Almeida, Ricardo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 : 460 - 481
  • [3] Non-Linear Neutral Differential Equations with Damping: Oscillation of Solutions
    Althobati, Saad
    Alzabut, Jehad
    Bazighifan, Omar
    [J]. SYMMETRY-BASEL, 2021, 13 (02): : 1 - 9
  • [4] Dien N. M., 2020, J INTEGRAL EQU APPL
  • [5] Nonlinear Sequential Fractional Differential Equations in Partially Ordered Spaces
    Fazli, Hossein
    Nieto, Juan J.
    [J]. FILOMAT, 2018, 32 (13) : 4577 - 4586
  • [6] Ferreira R. A. C, 2020, J INTEGRAL EQU APPL
  • [7] Novel Lyapunov-type inequalities for sequential fractional boundary value problems
    Ferreira, Rui A. C.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) : 171 - 179
  • [8] Granas A., 2003, Fixed point theory, DOI [10.1007/978-0-387-21593-8, DOI 10.1007/978-0-387-21593-8]
  • [9] SCHRODINGER TYPE OPERATORS ON LOCAL GENERALIZED MORREY SPACES RELATED TO CERTAIN NONNEGATIVE POTENTIALS
    Guliyev, Vagif S.
    Guliyev, Ramin, V
    Omarova, Mehriban N.
    Ragusa, Maria Alessandra
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 671 - 690
  • [10] Herrmann R., 2014, FRACTIONAL CALCULUS, DOI [10.1142/8934, DOI 10.1142/8934]