Forecasting with prediction intervals for periodic autoregressive moving average models

被引:28
|
作者
Anderson, Paul L. [1 ]
Meerschaert, Mark M. [2 ]
Zhang, Kai [2 ]
机构
[1] Albion Coll, Albion, MI 49224 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
关键词
Periodic correlation; autoregressive moving average; forecasting; TIME-SERIES; RIVER FLOWS; LIKELIHOOD; ALGORITHM;
D O I
10.1111/jtsa.12000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Periodic autoregressive moving average (PARMA) models are indicated for time series whose mean, variance and covariance function vary with the season. In this study, we develop and implement forecasting procedures for PARMA models. Forecasts are developed using the innovations algorithm, along with an idea of Ansley. A formula for the asymptotic error variance is provided, so that Gaussian prediction intervals can be computed. Finally, an application to monthly river flow forecasting is given, to illustrate the method.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [21] On estimation of nonparametric regression models with autoregressive and moving average errors
    Zheng, Qi
    Cui, Yunwei
    Wu, Rongning
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (02) : 235 - 262
  • [22] Time Varying Autoregressive Moving Average Models for Covariance Estimation
    Wiesel, Ami
    Bibi, Ofir
    Globerson, Amir
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (11) : 2791 - 2801
  • [23] Parametric quantile autoregressive moving average models with exogenous terms
    Dasilva, Alan
    Saulo, Helton
    Vila, Roberto
    Fiorucci, Jose A. A.
    Pal, Suvra
    STATISTICAL PAPERS, 2024, 65 (03) : 1613 - 1643
  • [24] Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches
    Melchior, Cristiane
    Zanini, Roselaine Ruviaro
    Guerra, Renata Rojas
    Rockenbach, Dinei A.
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 825 - 837
  • [25] Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy
    Cribari-Neto, Francisco
    Scher, Vinicius T.
    Bayer, Fabio M.
    INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) : 98 - 109
  • [26] Rule-based autoregressive moving average models for forecasting load on special days: A case study for France
    Arora, Siddharth
    Taylor, James W.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 266 (01) : 259 - 268
  • [27] Runoff forecasting for an asphalt plane by Artificial Neural Networks and comparisons with kinematic wave and autoregressive moving average models
    Chua, Lloyd H. C.
    Wong, Tommy S. W.
    JOURNAL OF HYDROLOGY, 2011, 397 (3-4) : 191 - 201
  • [28] Representation of Multiplicative Seasonal Vector Autoregressive Moving Average Models
    Yozgatligil, Ceylan
    Wei, William W. S.
    AMERICAN STATISTICIAN, 2009, 63 (04) : 328 - 334
  • [29] Binomial autoregressive moving average models with an application to US recessions
    Startz, Richard
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (01) : 1 - 8
  • [30] Wind Power Forecasting and Error Analysis using the Autoregressive Moving Average Modeling
    Rajagopalan, S.
    Santoso, S.
    2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 865 - 870