A new sliding-mode controller design methodology with derivative switching function for anti-lock brake system

被引:8
作者
Okyay, Ahmet [1 ,2 ]
Cigeroglu, Ender [1 ]
Baslamisli, S. Caglar [3 ]
机构
[1] Middle E Tech Univ, Dept Mech Engn, TR-06800 Ankara, Turkey
[2] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[3] Hacettepe Univ, Dept Mech Engn, Ankara, Turkey
关键词
Sliding-mode control; sliding surface; switching function; actuator time delay; FEEDBACK-CONTROL; SLIP CONTROL;
D O I
10.1177/0954406213476387
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, anti-lock brake system control using sliding-mode controller is investigated. Different alternatives for the switching function and the sliding surface, involved in the structure of the sliding-mode controller, are explored. It was aimed to reach a better controller performance with less chattering and robustness to actuator imperfections. Regarding applicability, tire force response was modeled as a uniformly distributed uncertain parameter during controller designs. Controllers are simulated for both constant and varying coefficient of friction roads, with optimized design parameters. The effects of actuator first-order dynamics and transportation delay, which come up in practical implementations, were considered. The sliding-mode control structure which employs derivative switching function with integral sliding surface is originally proposed in this study. It is found to produce less chattering and provide more robustness, which could not be achieved side by side using former designs.
引用
收藏
页码:2487 / 2503
页数:17
相关论文
共 38 条
[1]   Dynamic friction model-based tire-road friction estimation and emergency braking control [J].
Alvarez, L ;
Yi, JG ;
Horowitz, R ;
Olmos, L .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2005, 127 (01) :22-32
[2]  
[Anonymous], 2002, 2002010301 SAE
[3]  
[Anonymous], J2246 ENG SSOA
[4]  
[Anonymous], P EUR C PORT PROT 4
[5]  
[Anonymous], P 1995 AM CONTR C SE
[6]  
[Anonymous], P 36 IEEE C DEC CONT
[7]  
[Anonymous], 2000, P 2000 IEEE INT C CO
[8]  
[Anonymous], 1992, P 20 FISITA WORLD C
[9]  
[Anonymous], 2006, P 2006 C CONTR APPL
[10]  
[Anonymous], AUTOMOTIVE BRAKE SYS