A Risk Score for Predicting the Incidence of Hemorrhage in Critically Ill Neonates: Development and Validation Study

被引:31
|
作者
Sokou, Rozeta [1 ]
Piovani, Daniele [2 ,3 ]
Konstantinidi, Aikaterini [1 ]
Tsantes, Andreas G. [4 ,5 ]
Parastatidou, Stavroula [1 ]
Lampridou, Maria [1 ]
Ioakeimidis, Georgios [1 ]
Gounaris, Antonis [6 ]
Iacovidou, Nicoletta [7 ]
Kriebardis, Anastasios G. [8 ]
Politou, Marianna [9 ]
Kopterides, Petros [10 ]
Bonovas, Stefanos [2 ,3 ]
Tsantes, Argirios E. [4 ,5 ]
机构
[1] Agios Panteleimon Gen Hosp Nikea, Neonatal Intens Care Unit, Piraeus, Greece
[2] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[3] IRCCS, Humanitas Clin & Res Ctr, Milan, Italy
[4] Natl & Kapodistrian Univ Athens, Attiko Hosp, Sch Med, Lab Haematol, Athens, Greece
[5] Natl & Kapodistrian Univ Athens, Attiko Hosp, Sch Med, Blood Bank Unit, Athens, Greece
[6] Univ Hosp Larissa, Neonatal Intens Care Unit, Larisa, Greece
[7] Natl & Kapodistrian Univ Athens, Aretaeio Hosp, Neonatal Dept, Athens, Greece
[8] Univ West Attica, Sch Hlth & Caring Sci, Dept Biomed Sci, Lab Reliabil & Qual Control,Lab Hematol, Egaleo, Greece
[9] Natl & Kapodistrian Univ Athens, Aretaie Hosp, Sch Med, Dept Blood Transfus, Athens, Greece
[10] Excela Hlth Westmoreland Hosp, Intens Care Unit, Greensburg, PA USA
关键词
thromboelastometry; prediction model; hemorrhage; critically ill neonates; Neonatal Bleeding Risk index; INTRAVENTRICULAR HEMORRHAGE; HEMOSTASIS; SHRINKAGE; SELECTION;
D O I
10.1055/s-0040-1715832
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The aim of the study was to develop and validate a prediction model for hemorrhage in critically ill neonates which combines rotational thromboelastometry (ROTEM) parameters and clinical variables. This cohort study included 332 consecutive full-term and preterm critically ill neonates. We performed ROTEM and used the neonatal bleeding assessment tool (NeoBAT) to record bleeding events. We fitted double selection least absolute shrinkage and selection operator logit regression to build our prediction model. Bleeding within 24 hours of the ROTEM testing was the outcome variable, while patient characteristics, biochemical, hematological, and thromboelastometry parameters were the candidate predictors of bleeding. We used both cross-validation and bootstrap as internal validation techniques. Then, we built a prognostic index of bleeding by converting the coefficients from the final multivariable model of relevant prognostic variables into a risk score. A receiver operating characteristic analysis was used to calculate the area under curve (AUC) of our prediction index. EXTEM A10 and LI60, platelet counts, and creatinine levels were identified as the most robust predictors of bleeding and included them into a Neonatal Bleeding Risk (NeoBRis) index. The NeoBRis index demonstrated excellent model performance with an AUC of 0.908 (95% confidence interval [CI]: 0.870-0.946). Calibration plot displayed optimal calibration and discrimination of the index, while bootstrap resampling ensured internal validity by showing an AUC of 0.907 (95% CI: 0.868-0.947). We developed and internally validated an easy-to-apply prediction model of hemorrhage in critically ill neonates. After external validation, this model will enable clinicians to quantify the 24-hour bleeding risk.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 50 条
  • [21] Development and Validation of a Model for Predicting the Risk of Death in Patients with Acinetobacter baumannii Infection: A Retrospective Study
    Zhang, Hui
    Zhao, Yayun
    Zheng, Yahong
    Kong, Qinxiang
    Lv, Na
    Liu, Yanyan
    Zhao, Dongmei
    Li, Jiabin
    Ye, Ying
    INFECTION AND DRUG RESISTANCE, 2020, 13 : 2761 - 2772
  • [22] Development and Validation of a Nomogram for Predicting Death within 2 days After Intracerebral Hemorrhage
    Han, Qian
    Li, Mei
    Su, Dongpo
    Zuo, Zhengyao
    Fu, Aijun
    Zhu, Jun
    Chen, Tong
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2020, 29 (10)
  • [23] Validation of a score chart to predict the risk of chronic mesenteric ischemia and development of an updated score chart
    van Dijk, Louisa J. D.
    van Noord, Desiree
    Geelkerken, Robert H.
    Harki, Jihan
    Berendsen, Sophie A.
    de Vries, Annemarie C.
    Moelker, Adriaan
    Vergouwe, Yvonne
    Verhagen, Hence J. M.
    Kolkman, Jeroen J.
    Bruno, Marco J.
    Balm, Ron
    de Borst, Gert Jan
    Blauw, Juliette T.
    Bakker, Olaf J.
    Buscher, Hessel C. J. L.
    Fioole, Bram
    Hamming, Jaap F.
    van den Heuvel, Daniel A. F.
    van Hattum, Eline S.
    Hinnen, Jan Willem
    van der Laan, Maarten J.
    Lenaerts, Kaatje
    Peppelenbosch, Maikel P.
    van Petersen, Andre S.
    Rijnja, Pepijn
    van der Schaar, Peter J.
    Terlouw, Luke G.
    de Vries, Jean Paul P. M.
    Vroegindeweij, Dammis
    UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (09) : 1261 - 1270
  • [24] Development and validation of a prediction model for early identification of critically ill elderly COVID-19 patients
    Liu, Jue
    Tao, Liyuan
    Gao, Zhancheng
    Jiang, Rongmeng
    Liu, Min
    AGING-US, 2020, 12 (19): : 18822 - 18832
  • [25] Development and validation of a prediction score to assess the risk of depression in primary care
    Lapi, Francesco
    Castellini, Giovanni
    Ricca, Valdo
    Cricelli, Iacopo
    Marconi, Ettore
    Cricelli, Claudio
    JOURNAL OF AFFECTIVE DISORDERS, 2024, 355 : 363 - 370
  • [26] Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children
    Matics, Travis J.
    Sanchez-Pinto, L. Nelson
    JAMA PEDIATRICS, 2017, 171 (10)
  • [27] Development and Validation of a Nomogram for Predicting the Risk of Bell's Stage II/III Necrotizing Enterocolitis in Neonates Compared to Bell's Stage I
    Song, Shuting
    Zhang, Jian
    Zhao, Yuwei
    Dai, Liying
    FRONTIERS IN PEDIATRICS, 2022, 10
  • [28] Federated machine learning for predicting acute kidney injury in critically ill patients: a multicenter study in Taiwan
    Huang, Chun-Te
    Wang, Tsai-Jung
    Kuo, Li-Kuo
    Tsai, Ming-Ju
    Cia, Cong-Tat
    Chiang, Dung-Hung
    Chang, Po-Jen
    Chong, Inn-Wen
    Tsai, Yi-Shan
    Chu, Yuan-Chia
    Liu, Chia-Jen
    Chen, Cheng-Hsu
    Pai, Kai-Chih
    Wu, Chieh-Liang
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)
  • [29] Federated machine learning for predicting acute kidney injury in critically ill patients: a multicenter study in Taiwan
    Chun-Te Huang
    Tsai-Jung Wang
    Li-Kuo Kuo
    Ming-Ju Tsai
    Cong-Tat Cia
    Dung-Hung Chiang
    Po-Jen Chang
    Inn-Wen Chong
    Yi-Shan Tsai
    Yuan-Chia Chu
    Chia-Jen Liu
    Cheng-Hsu Chen
    Kai-Chih Pai
    Chieh-Liang Wu
    Health Information Science and Systems, 11
  • [30] Development and validation of clinical prediction models for acute kidney injury recovery at hospital discharge in critically ill adults
    Chao-Yuan Huang
    Fabian Güiza
    Greet De Vlieger
    Pieter Wouters
    Jan Gunst
    Michael Casaer
    Ilse Vanhorebeek
    Inge Derese
    Greet Van den Berghe
    Geert Meyfroidt
    Journal of Clinical Monitoring and Computing, 2023, 37 : 113 - 125