An analysis of the spectrum of the discontinuous Galerkin method

被引:32
作者
Krivodonova, Lilia [1 ]
Qin, Ruibin [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Discontinuous Galerkin method; Hyperbolic equations; Linear stability; Eigenvalues; CFL condition; Pade approximants;
D O I
10.1016/j.apnum.2012.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive explicit expressions for the eigenvalues (spectrum) of the discontinuous Galerkin spatial discretization applied to the linear advection equation. We show that the eigenvalues are related to the subdiagonal [p/p + 1] Pade approximation of exp(-z) when pth degree basis functions are used. We derive an upper bound on the eigenvalue with the largest magnitude as (p + 1)(p + 2). We demonstrate that this bound is not tight and prove that the asymptotic growth rate of the spectral radius is slower than quadratic in p. We also analyze the behavior of the spectrum near the imaginary axis to demonstrate that the spectral curves approach the imaginary axis although there are no purely imaginary eigenvalues. Crown Copyright (C) 2012 Published by Elsevier B.V. on behalf of IMACS. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 16 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods [J].
Ainsworth, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (01) :106-130
[3]  
[Anonymous], 2008, NODAL DISCONTINUOUS
[4]  
Baker G., 1981, Pade Approximants
[5]  
Chalmers N., RELAXING CFL N UNPUB
[6]  
CHAVENT G, 1989, ESAIM-MATH MODEL NUM, V23, P565
[7]   THE RUNGE-KUTTA LOCAL PROJECTION RHO-1-DISCONTINUOUS-GALERKIN FINITE-ELEMENT METHOD FOR SCALAR CONSERVATION-LAWS [J].
COCKBURN, B ;
SHU, CW .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (03) :337-361
[8]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[9]   GPU Accelerated Adams-Bashforth Multirate Discontinuous Galerkin FEM Simulation of High-Frequency Electromagnetic Fields [J].
Goedel, Nico ;
Schomann, Steffen ;
Warburton, Tim ;
Clemens, Markus .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) :2735-2738
[10]   High Order Strong Stability Preserving Time Discretizations [J].
Gottlieb, Sigal ;
Ketcheson, David I. ;
Shu, Chi-Wang .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (03) :251-289