A fiber dimension theorem for essential and canonical dimension

被引:10
|
作者
Loetscher, Roland [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
essential dimension; canonical dimension; algebraic group; fiber; category fibered in groupoids; algebraic stack; algebraic torus;
D O I
10.1112/S0010437X12000565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known fiber dimension theorem in algebraic geometry says that for every morphism f : X -> Y of integral schemes of finite type the dimension of every fiber of f is at least dim X dim Y. This has recently been generalized by Brosnan, Reichstein and Vistoli to certain morphisms of algebraic stacks f : X -> Y, where the usual dimension is replaced by essential dimension. We will prove a general version for morphisms of categories fibered in groupoids. Moreover, we will prove a variant of this theorem, where essential dimension and canonical dimension are linked. These results let us relate essential dimension to canonical dimension of algebraic groups. In particular, using the recent computation of the essential dimension of algebraic tori by MacDonald, Meyer, Reichstein and the author, we establish a lower bound on the canonical dimension of algebraic tori.
引用
收藏
页码:148 / 174
页数:27
相关论文
共 50 条
  • [31] On the notion of essential dimension for algebraic groups
    Z. Reichstein
    Transformation Groups, 2000, 5 : 265 - 304
  • [32] Essential dimension of spinor and Clifford groups
    Chernousov, Vladimir
    Merkurjev, Alexander
    ALGEBRA & NUMBER THEORY, 2014, 8 (02) : 457 - 472
  • [33] Finite groups of essential dimension one
    Ledet, Arne
    JOURNAL OF ALGEBRA, 2007, 311 (01) : 31 - 37
  • [34] A lower bound on the essential dimension of simple algebras
    Merkurjev, Alexander S.
    ALGEBRA & NUMBER THEORY, 2010, 4 (08) : 1055 - 1076
  • [35] ESSENTIAL DIMENSION AND ERROR-CORRECTING CODES
    Cernele, Shane
    Reichstein, Zinovy
    Nguyen, Athena
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 279 (1-2) : 155 - 179
  • [36] Essential dimension of semisimple groups of type B
    Baek, Sanghoon
    Kim, Yeongjong
    JOURNAL OF ALGEBRA, 2023, 633 : 205 - 224
  • [37] The Jordan property of Cremona groups and essential dimension
    Zinovy Reichstein
    Archiv der Mathematik, 2018, 111 : 449 - 455
  • [38] FINITE GROUP SCHEMES OF ESSENTIAL DIMENSION ONE
    Fakhruddin, Najmuddin
    DOCUMENTA MATHEMATICA, 2020, 25 : 55 - 64
  • [39] Essential dimension of symmetric groups in prime characteristic
    Edens, Oakley
    Reichstein, Zinovy
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [40] The Jordan property of Cremona groups and essential dimension
    Reichstein, Zinovy
    ARCHIV DER MATHEMATIK, 2018, 111 (05) : 449 - 455