A fiber dimension theorem for essential and canonical dimension

被引:10
|
作者
Loetscher, Roland [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
essential dimension; canonical dimension; algebraic group; fiber; category fibered in groupoids; algebraic stack; algebraic torus;
D O I
10.1112/S0010437X12000565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known fiber dimension theorem in algebraic geometry says that for every morphism f : X -> Y of integral schemes of finite type the dimension of every fiber of f is at least dim X dim Y. This has recently been generalized by Brosnan, Reichstein and Vistoli to certain morphisms of algebraic stacks f : X -> Y, where the usual dimension is replaced by essential dimension. We will prove a general version for morphisms of categories fibered in groupoids. Moreover, we will prove a variant of this theorem, where essential dimension and canonical dimension are linked. These results let us relate essential dimension to canonical dimension of algebraic groups. In particular, using the recent computation of the essential dimension of algebraic tori by MacDonald, Meyer, Reichstein and the author, we establish a lower bound on the canonical dimension of algebraic tori.
引用
收藏
页码:148 / 174
页数:27
相关论文
共 50 条
  • [21] ESSENTIAL DIMENSION IN MIXED CHARACTERISTIC
    Brosnan, Patrick
    Reichstein, Zinovy
    Vistoli, Angelo
    DOCUMENTA MATHEMATICA, 2018, 23 : 1587 - 1600
  • [22] The essential dimension of congruence covers
    Farb, Benson
    Kisin, Mark
    Wolfson, Jesse
    COMPOSITIO MATHEMATICA, 2021, 157 (11) : 2407 - 2432
  • [23] Groups with essential dimension one
    Chu, Huan
    Hu, Shou-Jen
    Kang, Ming-Chang
    Zhang, Jiping
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (02) : 177 - 191
  • [24] Essential dimension of representations of algebras
    Scavia, Federico
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (04) : 661 - 702
  • [25] Application of multihomogeneous covariants to the essential dimension of finite groups
    Roland Lötscher
    Transformation Groups, 2010, 15 : 611 - 623
  • [26] Essential p-dimension of the normalizer of a maximal torus
    Mark L. MacDonald
    Transformation Groups, 2011, 16 : 1143 - 1171
  • [27] Finite groups of essential dimension 2
    Duncan, Alexander
    COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (03) : 555 - 585
  • [28] Essential dimension of inseparable field extensions
    Reichstein, Zinovy
    Shukla, Abhishek Kumar
    ALGEBRA & NUMBER THEORY, 2019, 13 (02) : 513 - 530
  • [29] Linkage and essential p-dimension
    Chapman, Adam
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (07) : 2527 - 2531
  • [30] Essential p-dimension of PGLn
    Ruozzi, Anthony
    JOURNAL OF ALGEBRA, 2011, 328 (01) : 488 - 494