Quasi linear elliptic equations with critical growth via perturbation method

被引:145
作者
Liu, Xiang-Qing [2 ]
Liu, Jia-Quan [3 ]
Wang, Zhi-Qiang [1 ,4 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
[3] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[4] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
关键词
Quasilinear elliptic equations; Critical exponent; Perturbation methods; NONLINEAR SCHRODINGER-EQUATION; ARBITRARY SPACE DIMENSION; LOCAL WELL-POSEDNESS; SOLITON-SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.jde.2012.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of quasilinear Schrodinger equations which include the Modified Nonlinear Schrodinger Equations. A new perturbation approach is used to treat the critical exponent case giving new existence results. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 124
页数:23
相关论文
共 35 条
[1]  
Alves CO, 2009, ADV DIFFERENTIAL EQU, V14, P911
[2]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[3]  
[Anonymous], 2006, Advances in Soliton Research
[4]  
[Anonymous], 1986, Expo. Math.
[5]  
[Anonymous], NATO ASI SER C-MATH
[6]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[7]   Some remarks on critical point theory for nondifferentiable functionals [J].
Arcoya, David ;
Boccardo, Lucio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :79-100
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   Static solutions of a D-dimensional modified nonlinear Schrodinger equation [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, WJ .
NONLINEARITY, 2003, 16 (04) :1481-1497
[10]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226