Synchronisation in networks of delay-coupled type-I excitable systems

被引:20
|
作者
Keane, A. [1 ]
Dahms, T. [1 ]
Lehnert, J. [1 ]
Suryanarayana, S. A. [1 ,2 ]
Hoevel, P. [1 ,3 ,4 ]
Schoell, E. [1 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[2] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, D-10115 Berlin, Germany
[4] Northeastern Univ, Ctr Complex Network Res, Boston, MA 02115 USA
来源
EUROPEAN PHYSICAL JOURNAL B | 2012年 / 85卷 / 12期
关键词
DYNAMICS; CONNECTIVITY;
D O I
10.1140/epjb/e2012-30810-x
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Synchronisation in networks of delay-coupled type-I excitable systems
    A. Keane
    T. Dahms
    J. Lehnert
    S.A. Suryanarayana
    P. Hövel
    E. Schöll
    The European Physical Journal B, 2012, 85
  • [2] DYNAMICS OF DELAY-COUPLED EXCITABLE NEURAL SYSTEMS
    Dahlem, M. A.
    Hiller, G.
    Panchuk, A.
    Schoell, E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (02): : 745 - 753
  • [3] Stochastic bursting in unidirectionally delay-coupled noisy excitable systems
    Zheng, Chunming
    Pikovsky, Arkady
    CHAOS, 2019, 29 (04)
  • [4] Mean Field Dynamics of Networks of Delay-coupled Noisy Excitable Units
    Franovic, Igor
    Todorovic, Kristina
    Vasovic, Nebojsa
    Buric, Nikola
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [5] Diverse coherence-resonance chimeras in coupled type-I excitable systems
    Khatun, Taniya
    Bandyopadhyay, Biswabibek
    Banerjee, Tanmoy
    PHYSICAL REVIEW E, 2022, 106 (05)
  • [6] Stability of networks of delay-coupled delay oscillators
    Hoefener, J. M.
    Sethia, G. C.
    Gross, T.
    EPL, 2011, 95 (04)
  • [7] Delay control of coherence resonance in type-I excitable dynamics
    R. Aust
    P. Hövel
    J. Hizanidis
    E. Schöll
    The European Physical Journal Special Topics, 2010, 187 : 77 - 85
  • [8] Delay control of coherence resonance in type-I excitable dynamics
    Aust, R.
    Hoevel, P.
    Hizanidis, J.
    Schoell, E.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 187 (01): : 77 - 85
  • [9] Analytical and experimental study of two delay-coupled excitable units
    Weicker, Lionel
    Erneux, Thomas
    Keuninckx, Lars
    Danckaert, Jan
    PHYSICAL REVIEW E, 2014, 89 (01):
  • [10] Some novel dynamics in delay-coupled networks of dynamical systems
    Atay, Fatihcan M.
    INTERNATIONAL CONFERENCE ON COMPLEX PROCESSES IN PLASMAS AND NONLINEAR DYNAMICAL SYSTEMS, 2014, 1582 : 148 - 157