Valorization of Char From Biomass Gasification as Catalyst Support in Dry Reforming of Methane

被引:21
作者
Benedetti, Vittoria [1 ]
Ail, Snehesh Shivananda [1 ]
Patuzzi, Francesco [1 ]
Baratieri, Marco [1 ]
机构
[1] Free Univ Bolzano, Fac Sci & Technol, Bolzano, Italy
关键词
char; biomass gasification; dry reforming of methane; catalyst; cobalt; magnesium oxide; ACTIVATED CARBON; SYNTHESIS GAS; BY-PRODUCT; DIOXIDE; COBALT; CO2; CH4; PERFORMANCE; COMBUSTION; ADSORPTION;
D O I
10.3389/fchem.2019.00119
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study responds to the need of finding innovative routes for valorizing char derived from biomass gasification. Char is currently treated as a waste representing an energetic and economic loss for plant owners. However, it displays many similarities to activated carbon (AC) and could replace it in several applications. In this regard, the current work investigates the use of gasification derived char as catalyst support in dry reforming of methane (DRM) reactions. Char collected from a commercial biomass gasifier currently in operation was characterized and employed for the synthesis of cobalt catalysts. The catalysts were characterized and tested in an atmospheric pressure fixed bed reactor operating at 850 degrees C with CH4:CO2 = 1 and a weight hourly space velocity of 6,500 mL g(-1) h(-1). The effectiveness of the synthesized catalysts was defined based on CO2 and CH4 conversions, the corresponding H-2 and CO yields and their stability. Accordingly, catalysts were synthesized with cobalt loading of 10, 15 and 20 wt.% on untreated and HNO3 treated char, and the catalyst with optimum comparative performance was promoted with 2 wt.% MgO. Catalysts prepared using untreated char showed low average conversions of 23 and 17% for CO2 and CH4, yields of 1 and 14% for H-2 and CO, and deactivated after few minutes of operation. Higher metal loadings corresponded to lower conversion and yields. Although HNO3 treatment slightly increased conversions and yields and enhanced the stability of the catalyst, the catalyst deactivated again after few minutes. On the contrary, MgO addition boosted the catalyst performances leading to conversions (95 and 94% for CO2 and CH4) and yields (44 and 53% for H-2 and CO) similar to what obtained using conventional supports such as Al2O3. Moreover, MgO catalysts proved to be very stable during the whole duration of the test.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Synthesis of char-based acidic catalyst for methanolysis of waste cooking oil: An insight into a possible valorization pathway for the solid by-product of gasification [J].
Ahmad, Junaid ;
Rashid, Umer ;
Patuzzi, Francesco ;
Baratieri, Marco ;
Taufiq-Yap, Yun Hin .
ENERGY CONVERSION AND MANAGEMENT, 2018, 158 :186-192
[2]   Fuel-Rich Combustion Synthesized Co/Al2O3 Catalysts for Wax and Liquid Fuel Production via Fischer-Tropsch Reaction [J].
Ail, Snehesh Shivananda ;
Benedetti, Vittoria ;
Baratieri, Marco ;
Dasappa, Srinivasaiah .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (11) :3833-3843
[3]   Investigations into enhanced wax production with combustion synthesized Fischer-Tropsch catalysts [J].
Ail, Snehesh Shivananda ;
Dasappa, S. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 116 :80-90
[4]  
[Anonymous], 26 EUR BIOM C EXH
[5]  
[Anonymous], EURASIAN CHEM J
[6]   An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts [J].
Arora, Shalini ;
Prasad, R. .
RSC ADVANCES, 2016, 6 (110) :108668-108688
[7]   Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst [J].
Ayodele, Bamidele V. ;
Khan, Maksudur R. ;
Cheng, Chin Kui .
BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS, 2016, 11 (02) :210-219
[8]  
Bansal R.C., 2005, ACTIVATED CARBON ADS, P1, DOI DOI 10.1201/9781420028812
[9]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[10]  
Basu P, 2010, BIOMASS GASIFICATION