A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model

被引:25
作者
Wu, Xinrong [1 ,2 ]
Zhang, Shaoqing [3 ]
Liu, Zhengyu [4 ,5 ]
Rosati, Anthony [3 ]
Delworth, Thomas L. [3 ]
机构
[1] GFDL Wisconsin Joint Visiting Program, Princeton, NJ USA
[2] State Ocean Adm, Natl Marine Data & Informat Serv, Key Lab Marine Environm Informat Technol, Tianjin, Peoples R China
[3] Princeton Univ, GFDL, NOAA, Princeton, NJ 08544 USA
[4] Univ Wisconsin, Dept Atmospher & Ocean Sci, Ctr Climate Res, Madison, WI USA
[5] Peking Univ, Lab Ocean Atmospher Studies, Beijing 100871, Peoples R China
关键词
Observing system; Geographic dependence; Parameter estimation; Coupled model; SIMULATED RADAR DATA; ROOT KALMAN FILTER; DATA ASSIMILATION; MICROPHYSICAL PARAMETERS; SIMULTANEOUS STATE; ATMOSPHERIC STATE; ERROR COVARIANCE; PART II; ADJUSTMENT;
D O I
10.1007/s00382-012-1385-1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Observational information has a strong geographic dependence that may directly influence the quality of parameter estimation in a coupled climate system. Using an intermediate atmosphere-ocean-land coupled model, the impact of geographic dependent observing system on parameter estimation is explored within a "twin" experiment framework. The "observations" produced by a "truth" model are assimilated into an assimilation model in which the most sensitive model parameter has a different geographic structure from the "truth", for retrieving the "truth" geographic structure of the parameter. To examine the influence of data-sparse areas on parameter estimation, the twin experiment is also performed with an observing system in which the observations in some area are removed. Results show that traditional single-valued parameter estimation (SPE) attains a global mean of the "truth", while geographic dependent parameter optimization (GPO) can retrieve the "truth" structure of the parameter and therefore significantly improves estimated states and model predictability. This is especially true when an observing system with data-void areas is applied, where the error of state estimate is reduced by 31 % and the corresponding forecast skill is doubled by GPO compared with SPE.
引用
收藏
页码:1789 / 1798
页数:10
相关论文
共 50 条
  • [41] Parameter estimation of two coupled oscillator model for pure intrinsic thermo-acoustic instability
    Roeland Wildemans
    Viktor Kornilov
    Ines Lopez Arteaga
    Nonlinear Dynamics, 2023, 111 : 12835 - 12853
  • [42] A study on parameter estimation of the synchronous generator system based on the modified PSO
    Choi, Hyung-Joo
    Kim, In-Soo
    Lee, Heung-Ho
    Transactions of the Korean Institute of Electrical Engineers, 2015, 64 (01) : 8 - 15
  • [43] Study on a Vision Sensing System for the Parameter Estimation of a Serial Construction Robot
    Xia, Yupeng
    Yamada, Hironao
    Kawasaki, Haruhiko
    ADVANCED RESEARCH ON INFORMATION SCIENCE, AUTOMATION AND MATERIAL SYSTEM, PTS 1-6, 2011, 219-220 : 1049 - +
  • [44] An improved method for nonlinear parameter estimation: a case study of the Rossler model
    He, Wen-Ping
    Wang, Liu
    Jiang, Yun-Di
    Wan, Shi-Quan
    THEORETICAL AND APPLIED CLIMATOLOGY, 2016, 125 (3-4) : 521 - 528
  • [45] Optimal Parameter Estimation of Battery Model for Pivotal Automotive Battery Management System
    Sangwan, Venu
    Sharma, Avinash
    Kumar, Rajesh
    Rathore, Akshay Kumar
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2017 17TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2017,
  • [46] Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information
    Guo, Song
    Norris, Sean
    Bialek, Janusz
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (06) : 2854 - 2861
  • [47] Error Correction Method of TIADC System Based on Parameter Estimation of Identification Model
    Sun, Ning
    Li, Jie
    Zhang, Debiao
    Hu, Chenjun
    Peng, Xiaofei
    Jiang, Jie
    Wang, Shuai
    Zhang, Zeyu
    Cui, Wentao
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [48] Numerical Simulation and Parameter Estimation of the Space-Fractional Magnetohydrodynamic Flow and Heat Transfer Coupled Model
    Liu, Yi
    Jiang, Xiaoyun
    Jia, Junqing
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [49] Parameter and State Estimation in a Cholera Model with Threshold Immunology: A Case Study of Senegal
    Beda O. Ogola
    Woldegebriel A. Woldegerima
    E. O. Omondi
    Bulletin of Mathematical Biology, 2020, 82
  • [50] Parameter Estimation for Multibody System Dynamic Model of Delta Robot From Experimental Data
    Shehata, M.
    Elshami, M.
    Bai, Q.
    Zhao, X.
    IFAC PAPERSONLINE, 2021, 54 (14): : 72 - 77