A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model

被引:25
|
作者
Wu, Xinrong [1 ,2 ]
Zhang, Shaoqing [3 ]
Liu, Zhengyu [4 ,5 ]
Rosati, Anthony [3 ]
Delworth, Thomas L. [3 ]
机构
[1] GFDL Wisconsin Joint Visiting Program, Princeton, NJ USA
[2] State Ocean Adm, Natl Marine Data & Informat Serv, Key Lab Marine Environm Informat Technol, Tianjin, Peoples R China
[3] Princeton Univ, GFDL, NOAA, Princeton, NJ 08544 USA
[4] Univ Wisconsin, Dept Atmospher & Ocean Sci, Ctr Climate Res, Madison, WI USA
[5] Peking Univ, Lab Ocean Atmospher Studies, Beijing 100871, Peoples R China
关键词
Observing system; Geographic dependence; Parameter estimation; Coupled model; SIMULATED RADAR DATA; ROOT KALMAN FILTER; DATA ASSIMILATION; MICROPHYSICAL PARAMETERS; SIMULTANEOUS STATE; ATMOSPHERIC STATE; ERROR COVARIANCE; PART II; ADJUSTMENT;
D O I
10.1007/s00382-012-1385-1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Observational information has a strong geographic dependence that may directly influence the quality of parameter estimation in a coupled climate system. Using an intermediate atmosphere-ocean-land coupled model, the impact of geographic dependent observing system on parameter estimation is explored within a "twin" experiment framework. The "observations" produced by a "truth" model are assimilated into an assimilation model in which the most sensitive model parameter has a different geographic structure from the "truth", for retrieving the "truth" geographic structure of the parameter. To examine the influence of data-sparse areas on parameter estimation, the twin experiment is also performed with an observing system in which the observations in some area are removed. Results show that traditional single-valued parameter estimation (SPE) attains a global mean of the "truth", while geographic dependent parameter optimization (GPO) can retrieve the "truth" structure of the parameter and therefore significantly improves estimated states and model predictability. This is especially true when an observing system with data-void areas is applied, where the error of state estimate is reduced by 31 % and the corresponding forecast skill is doubled by GPO compared with SPE.
引用
收藏
页码:1789 / 1798
页数:10
相关论文
共 50 条
  • [31] A feasibility study of on-line excitation system parameter estimation
    Ludwig, E
    Crow, ML
    Erickson, K
    Shah, K
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (03) : 910 - 916
  • [33] A New Genetic Fuzzy System Approach for Parameter Estimation of ARIMA Model
    Hassan, Saima
    Jaafar, Jafreezal
    Belhaouari, Brahim S.
    Khosravi, Abbas
    INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012), 2012, 1482 : 455 - 459
  • [34] Time delay and model parameter estimation for nonlinear system with simultaneous approach
    Liu, Benyi
    Chen, Weifeng
    JOURNAL OF PROCESS CONTROL, 2024, 139
  • [35] Study on joint Bayesian model selection and parameter estimation method of GTD model
    ZhiGuang Shi
    JianXiong Zhou
    HongZhong Zhao
    Qiang Fu
    Science in China Series F: Information Sciences, 2007, 50 : 261 - 272
  • [36] Normalized-Model Reference System for Parameter Estimation of Induction Motors
    Veliz-Tejo, Adolfo
    Travieso-Torres, Juan Carlos
    Peters, Andres A.
    Mora, Andres
    Leiva-Silva, Felipe
    ENERGIES, 2022, 15 (13)
  • [37] Parameter Estimation for a Kinetic Model of a Cellular System Using Model Order Reduction Method
    Eshtewy, Neveen Ali
    Scholz, Lena
    Kremling, Andreas
    MATHEMATICS, 2023, 11 (03)
  • [38] Study on joint Bayesian model selection and parameter estimation method of GTD model
    Shi ZhiGuang
    Zhou JianXiong
    Zhao HongZhong
    Fu Qiang
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2007, 50 (02): : 261 - 272
  • [39] Mass estimation of ground vehicles based on longitudinal dynamics using loosely coupled integrated navigation system and CAN-bus data with model parameter estimation
    Jensen, Kenneth M.
    Santos, Ilmar F.
    Clemmensen, Line K. H.
    Theodorsen, Soren
    Corstens, Harry J. P.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 171
  • [40] Parameter estimation of two coupled oscillator model for pure intrinsic thermo-acoustic instability
    Wildemans, Roeland
    Kornilov, Viktor
    Arteaga, Ines Lopez
    NONLINEAR DYNAMICS, 2023, 111 (14) : 12835 - 12853