Dynamic Markov Random Fields

被引:0
|
作者
Torr, P. H. S. [1 ]
机构
[1] Oxford Brookes Univ, Dept Comp, Oxford OX3 0BP, England
来源
2008 INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, PROCEEDINGS | 2008年
关键词
Markov Random Fields; Structure from Motion; Segmentation; Pose Estimation; Blending online and offline Computation;
D O I
10.1109/IMVIP.2008.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this talk I will outline some of the recent work undertaken by the Oxford Brookes Vision Group, a common theme underlying much of the research is to cast vision problems in terms of combinatorial optimization which provides a rich a deep theory for understanding them, with many new and exciting results.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [1] Dynamic graph cuts for efficient inference in Markov random fields
    Kohli, Pushmeet
    Torr, Philip H. S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (12) : 2079 - 2088
  • [2] HIDDEN MARKOV RANDOM FIELDS
    Kuensch, Hans
    Geman, Stuart
    Kehagias, Athanasios
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (03) : 577 - 602
  • [3] Spectral Design in Markov Random Fields
    Wang, Jiao
    Thibault, Jean-Baptiste
    Yu, Zhou
    Sauer, Ken
    Bouman, Charles
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2010, 1305 : 451 - +
  • [4] MORPHOLOGICAL MARKOV RANDOM-FIELDS
    CARSTENSEN, JM
    STATISTICS & PROBABILITY LETTERS, 1994, 20 (04) : 321 - 326
  • [5] Bottleneck potentials in Markov Random Fields
    Abbas, Ahmed
    Swoboda, Paul
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3174 - 3183
  • [6] Loss networks and Markov random fields
    Zachary, S
    Ziedins, I
    JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) : 403 - 414
  • [7] Markov Random Fields on Triangle Meshes
    Andersen, Vedrana
    Aanaes, Henrik
    Baerentzen, Andreas
    Nielsen, Mads
    WSCG 2010: COMMUNICATION PAPERS PROCEEDINGS, 2010, : 265 - +
  • [8] Uncertainty Quantification for Markov Random Fields\ast
    Birmpa, Panagiota
    Katsoulakis, Markos A.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04): : 1457 - 1498
  • [9] Submodular Relaxation for Inference in Markov Random Fields
    Osokin, Anton
    Vetrov, Dmitry P.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (07) : 1347 - 1359
  • [10] Preserving objects in Markov Random Fields region growing image segmentation
    Amer Dawoud
    Anton Netchaev
    Pattern Analysis and Applications, 2012, 15 : 155 - 161