Effects of spatial frequency distributions on amplitude death in an array of coupled Landau-Stuart oscillators

被引:19
|
作者
Wu, Ye [2 ,3 ]
Liu, Weiqing [1 ]
Xiao, Jinghua [2 ,3 ]
Zou, Wei [4 ,5 ,6 ]
Kurths, Juergen [5 ,6 ,7 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Sci, Ganzhou 341000, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Math & Sci, Wuhan 430074, Peoples R China
[5] Univ Berlin, Inst Phys, D-12489 Berlin, Germany
[6] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[7] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
基金
中国国家自然科学基金; 巴西圣保罗研究基金会;
关键词
SYNCHRONIZATION;
D O I
10.1103/PhysRevE.85.056211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influences of spatial frequency distributions on complete amplitude death are explored by studying an array of diffusively coupled oscillators. We found that with all possible sets of spatial frequency distributions, the two critical coupling strengths epsilon(c1) (lower-bounded value) and epsilon(c2) (upper-bounded value) needed to get complete amplitude death exhibit a universal power law and a log-normal distribution respectively, which has long tails in both cases. This is significant for dynamics control, since large variations of epsilon(c1) and epsilon(c2) are possible for some spatial arrangements. Moreover, we explore optimal spatial distributions with the smallest (largest) epsilon(c1) or epsilon(c2).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Generalizing the transition from amplitude to oscillation death in coupled oscillators
    Zou, Wei
    Senthilkumar, D. V.
    Koseska, Aneta
    Kurths, Juergen
    PHYSICAL REVIEW E, 2013, 88 (05):
  • [42] Amplitude death in the absence of time delays in identical coupled oscillators
    Karnatak, Rajat
    Ramaswamy, Ram
    Prasad, Awadhesh
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [43] Amplitude death in delay-coupled oscillators on directed graphs
    Sugitani, Yoshiki
    Konishi, Keiji
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [44] Amplitude death induced by fractional derivatives in nonlinear coupled oscillators
    Liu, Q. X.
    Liu, J. K.
    Chen, Y. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 414 - 424
  • [45] Total and partial amplitude death in networks of diffusively coupled oscillators
    Atay, FM
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (1-2) : 1 - 18
  • [46] Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators
    Premalatha, K.
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2017, 95 (02):
  • [47] Emergent behavior of conjugate-coupled Stuart-Landau oscillators in directed star networks
    Chen, Xinyue
    Li, Fan
    Liu, Shuai
    Zou, Wei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 629
  • [48] Lyapunov spectra and collective modes of chimera states in globally coupled Stuart-Landau oscillators
    Hoehlein, Kevin
    Kemeth, Felix P.
    Krischer, Katharina
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [49] Enhancing coherence via tuning coupling range in nonlocally coupled Stuart-Landau oscillators
    Zhao, Nannan
    Sun, Zhongkui
    Xu, Wei
    SCIENTIFIC REPORTS, 2018, 8
  • [50] Amplitude death criteria for coupled complex Ginzburg-Landau systems
    Van Gorder, Robert A.
    Krause, Andrew L.
    Kwiecinski, James A.
    NONLINEAR DYNAMICS, 2019, 97 (01) : 151 - 159