Effects of spatial frequency distributions on amplitude death in an array of coupled Landau-Stuart oscillators

被引:19
|
作者
Wu, Ye [2 ,3 ]
Liu, Weiqing [1 ]
Xiao, Jinghua [2 ,3 ]
Zou, Wei [4 ,5 ,6 ]
Kurths, Juergen [5 ,6 ,7 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Sci, Ganzhou 341000, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Math & Sci, Wuhan 430074, Peoples R China
[5] Univ Berlin, Inst Phys, D-12489 Berlin, Germany
[6] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[7] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
基金
中国国家自然科学基金; 巴西圣保罗研究基金会;
关键词
SYNCHRONIZATION;
D O I
10.1103/PhysRevE.85.056211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influences of spatial frequency distributions on complete amplitude death are explored by studying an array of diffusively coupled oscillators. We found that with all possible sets of spatial frequency distributions, the two critical coupling strengths epsilon(c1) (lower-bounded value) and epsilon(c2) (upper-bounded value) needed to get complete amplitude death exhibit a universal power law and a log-normal distribution respectively, which has long tails in both cases. This is significant for dynamics control, since large variations of epsilon(c1) and epsilon(c2) are possible for some spatial arrangements. Moreover, we explore optimal spatial distributions with the smallest (largest) epsilon(c1) or epsilon(c2).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High-order synchronization in a system of nonlinearly coupled Stuart-Landau oscillators
    Nissi Thomas
    S. Karthiga
    M. Senthilvelan
    The European Physical Journal Plus, 136
  • [32] Cluster singularity: The unfolding of clustering behavior in globally coupled Stuart-Landau oscillators
    Kemeth, Felix P.
    Haugland, Sindre W.
    Krischer, Katharina
    CHAOS, 2019, 29 (02)
  • [33] Impact of Nonlocal Interaction on Chimera States in Nonlocally Coupled Stuart-Landau Oscillators
    Premalatha, K.
    Amuda, R.
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    COMPLEX SYSTEMS, 2021, 30 (04): : 513 - 524
  • [34] Enhancing coherence via tuning coupling range in nonlocally coupled Stuart–Landau oscillators
    Nannan Zhao
    Zhongkui Sun
    Wei Xu
    Scientific Reports, 8
  • [35] High-order synchronization in a system of nonlinearly coupled Stuart-Landau oscillators
    Thomas, Nissi
    Karthiga, S.
    Senthilvelan, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (12):
  • [36] Frequency-amplitude Relationship of Coupled Anharmonic Oscillators
    Li, Zheng Biao
    Zhu, Wei Hong
    VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT I, PTS 1-3, 2012, 105-107 : 271 - +
  • [37] Delay Effects on Amplitude Death, Oscillation Death, and Renewed Limit Cycle Behavior in Cyclically Coupled Oscillators
    Roopnarain, Ryan
    Choudhury, S. Roy
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2021, 10 (03) : 431 - 459
  • [38] Amplitude death criteria for coupled complex Ginzburg–Landau systems
    Robert A. Van Gorder
    Andrew L. Krause
    James A. Kwiecinski
    Nonlinear Dynamics, 2019, 97 : 151 - 159
  • [39] Amplitude death in networks of delay-coupled delay oscillators
    Hoefener, Johannes M.
    Sethia, Gautam C.
    Gross, Thilo
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1999):
  • [40] Experimental observation of partial amplitude death in coupled chaotic oscillators
    Liu Wei-Qing
    Yang Jun-Zhong
    Xiao Jing-Hua
    CHINESE PHYSICS, 2006, 15 (10): : 2260 - 2265