Effects of spatial frequency distributions on amplitude death in an array of coupled Landau-Stuart oscillators

被引:19
|
作者
Wu, Ye [2 ,3 ]
Liu, Weiqing [1 ]
Xiao, Jinghua [2 ,3 ]
Zou, Wei [4 ,5 ,6 ]
Kurths, Juergen [5 ,6 ,7 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Sci, Ganzhou 341000, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Math & Sci, Wuhan 430074, Peoples R China
[5] Univ Berlin, Inst Phys, D-12489 Berlin, Germany
[6] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[7] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
基金
中国国家自然科学基金; 巴西圣保罗研究基金会;
关键词
SYNCHRONIZATION;
D O I
10.1103/PhysRevE.85.056211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influences of spatial frequency distributions on complete amplitude death are explored by studying an array of diffusively coupled oscillators. We found that with all possible sets of spatial frequency distributions, the two critical coupling strengths epsilon(c1) (lower-bounded value) and epsilon(c2) (upper-bounded value) needed to get complete amplitude death exhibit a universal power law and a log-normal distribution respectively, which has long tails in both cases. This is significant for dynamics control, since large variations of epsilon(c1) and epsilon(c2) are possible for some spatial arrangements. Moreover, we explore optimal spatial distributions with the smallest (largest) epsilon(c1) or epsilon(c2).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Transitions to amplitude death in a regular array of nonlinear oscillators
    Yang, Junzhong
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [22] Robust design against frequency variation for amplitude death in delay-coupled oscillators
    Sugitani, Yoshiki
    Kawahara, Kensei
    Konishi, Keiji
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [23] AMPLITUDE DEATH IN AN ARRAY OF LIMIT-CYCLE OSCILLATORS
    MIROLLO, RE
    STROGATZ, SH
    JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (1-2) : 245 - 262
  • [24] Amplitude death in coupled robust-chaos oscillators
    Palazzi, M. J.
    Cosenza, M. G.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (13): : 2831 - 2836
  • [25] Distributed delays facilitate amplitude death of coupled oscillators
    Atay, FM
    PHYSICAL REVIEW LETTERS, 2003, 91 (09)
  • [26] Amplitude death in coupled robust-chaos oscillators
    M. J. Palazzi
    M. G. Cosenza
    The European Physical Journal Special Topics, 2014, 223 : 2831 - 2836
  • [27] Measuring the transient time of amplitude death in coupled oscillators
    Zhao, Nannan
    Sun, Zhongkui
    Song, Xueli
    Xiao, Yuzhu
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 439
  • [28] Emergence of amplitude and oscillation death in identical coupled oscillators
    Zou, Wei
    Senthilkumar, D. V.
    Duan, Jinqiao
    Kurths, Juergen
    PHYSICAL REVIEW E, 2014, 90 (03)
  • [29] Measuring the transient time of amplitude death in coupled oscillators
    Zhao, Nannan
    Sun, Zhongkui
    Song, Xueli
    Xiao, Yuzhu
    Physica D: Nonlinear Phenomena, 2022, 439
  • [30] Amplitude death in coupled opto-thermal oscillators
    Herrero, H
    Figueras, M
    Rius, J
    Pi, F
    Orriols, G
    PROCEEDINGS OF THE 5TH EXPERIMENTAL CHAOS CONFERENCE, 2001, : 255 - 261