Effects of spatial frequency distributions on amplitude death in an array of coupled Landau-Stuart oscillators

被引:19
|
作者
Wu, Ye [2 ,3 ]
Liu, Weiqing [1 ]
Xiao, Jinghua [2 ,3 ]
Zou, Wei [4 ,5 ,6 ]
Kurths, Juergen [5 ,6 ,7 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Sci, Ganzhou 341000, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Math & Sci, Wuhan 430074, Peoples R China
[5] Univ Berlin, Inst Phys, D-12489 Berlin, Germany
[6] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[7] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
基金
巴西圣保罗研究基金会; 中国国家自然科学基金;
关键词
SYNCHRONIZATION;
D O I
10.1103/PhysRevE.85.056211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influences of spatial frequency distributions on complete amplitude death are explored by studying an array of diffusively coupled oscillators. We found that with all possible sets of spatial frequency distributions, the two critical coupling strengths epsilon(c1) (lower-bounded value) and epsilon(c2) (upper-bounded value) needed to get complete amplitude death exhibit a universal power law and a log-normal distribution respectively, which has long tails in both cases. This is significant for dynamics control, since large variations of epsilon(c1) and epsilon(c2) are possible for some spatial arrangements. Moreover, we explore optimal spatial distributions with the smallest (largest) epsilon(c1) or epsilon(c2).
引用
收藏
页数:6
相关论文
共 42 条
  • [21] Collective behavior of identical Stuart-Landau oscillators in a star network with coupling asymmetry effects
    Chen, XinYue
    Chen, Ran
    Sun, YiLin
    Liu, Shuai
    CHAOS, 2023, 33 (04)
  • [22] Effect of amplitude and frequency of limit cycle oscillators on their coupled and forced dynamics
    D. Premraj
    Krishna Manoj
    Samadhan A. Pawar
    R. I. Sujith
    Nonlinear Dynamics, 2021, 103 : 1439 - 1452
  • [23] Time-varying interaction leads to amplitude death in coupled nonlinear oscillators
    AWADHESH PRASAD
    Pramana, 2013, 81 : 407 - 415
  • [24] Nontrivial amplitude death in coupled parity-time-symmetric Lienard oscillators
    Singh, Uday
    Raina, Ankit
    Chandrasekar, V. K.
    Senthilkumar, D., V
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [25] Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators
    Liu, Weiqing
    Xiao, Guibao
    Zhu, Yun
    Zhan, Meng
    Xiao, Jinghua
    Kurths, Juergen
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [26] Time-varying interaction leads to amplitude death in coupled nonlinear oscillators
    Prasad, Awadhesh
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (03): : 407 - 415
  • [27] Oscillation Death and Amplitude Change in Coupled van der Pol Oscillators with Strong Frustrations
    Uwate, Yoko
    Nishio, Yoshifumi
    2014 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2014, : 233 - 236
  • [28] Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators
    Thomas, Nevin
    Mondal, Sirshendu
    Pawar, Samadhan A.
    Sujith, R. I.
    CHAOS, 2018, 28 (03)
  • [29] Reviving oscillation with optimal spatial period of frequency distribution in coupled oscillators
    Deng, Tongfa
    Liu, Weiqing
    Zhu, Yun
    Xiao, Jinghua
    Kurths, Juergen
    CHAOS, 2016, 26 (09)
  • [30] 2-Cluster fixed-point analysis of mean-coupled Stuart-Landau oscillators in the center manifold
    Kemeth, Felix P.
    Fiedler, Bernold
    Haugland, Sindre W.
    Krischer, Katharina
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (02):