Effects of spatial frequency distributions on amplitude death in an array of coupled Landau-Stuart oscillators

被引:19
|
作者
Wu, Ye [2 ,3 ]
Liu, Weiqing [1 ]
Xiao, Jinghua [2 ,3 ]
Zou, Wei [4 ,5 ,6 ]
Kurths, Juergen [5 ,6 ,7 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Sci, Ganzhou 341000, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Math & Sci, Wuhan 430074, Peoples R China
[5] Univ Berlin, Inst Phys, D-12489 Berlin, Germany
[6] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[7] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
基金
中国国家自然科学基金; 巴西圣保罗研究基金会;
关键词
SYNCHRONIZATION;
D O I
10.1103/PhysRevE.85.056211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influences of spatial frequency distributions on complete amplitude death are explored by studying an array of diffusively coupled oscillators. We found that with all possible sets of spatial frequency distributions, the two critical coupling strengths epsilon(c1) (lower-bounded value) and epsilon(c2) (upper-bounded value) needed to get complete amplitude death exhibit a universal power law and a log-normal distribution respectively, which has long tails in both cases. This is significant for dynamics control, since large variations of epsilon(c1) and epsilon(c2) are possible for some spatial arrangements. Moreover, we explore optimal spatial distributions with the smallest (largest) epsilon(c1) or epsilon(c2).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Amplitude death, oscillation death, and periodic regimes in dynamically coupled Landau-Stuart oscillators with and without distributed delay
    Roopnarain, Ryan
    Choudhury, S. Roy
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 187 : 30 - 50
  • [2] Explosive oscillation death in coupled Stuart-Landau oscillators
    Bi, Hongjie
    Hu, Xin
    Zhang, Xiyun
    Zou, Yong
    Liu, Zonghua
    Guan, Shuguang
    EPL, 2014, 108 (05)
  • [3] Stable amplitude chimera in a network of coupled Stuart-Landau oscillators
    Sathiyadevi, K.
    Chandrasekar, V. K.
    Senthilkumar, D., V
    PHYSICAL REVIEW E, 2018, 98 (03)
  • [4] Effects of frequency mismatch on amplitude death in delay-coupled oscillators
    Mizukami, Shinsuke
    Konishi, Keiji
    Sugitani, Yoshiki
    Kouda, Takahiro
    Hara, Naoyuki
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [5] Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states
    Ku, Wai Lim
    Girvan, Michelle
    Ott, Edward
    CHAOS, 2015, 25 (12)
  • [6] Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators
    Premalatha, K.
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    CHAOS, 2018, 28 (03)
  • [7] Amplitude-mediated chimera states in nonlocally coupled Stuart-Landau oscillators
    Bi, Hongjie
    Fukai, Tomoki
    CHAOS, 2022, 32 (08)
  • [8] Amplitude death, oscillation death, wave, and multistability in identical Stuart-Landau oscillators with conjugate coupling
    Han, Wenchen
    Cheng, Hongyan
    Dai, Qionglin
    Li, Haihong
    Ju, Ping
    Yang, Junzhong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 73 - 80
  • [9] Novel transition and Bellerophon state in coupled Stuart–Landau oscillators
    Jia-Meng Zhang
    Xue Li
    Yong Zou
    Shu-Guang Guan
    Frontiers of Physics, 2019, 14
  • [10] Zn equivariant in delay coupled dissipative Stuart–Landau oscillators
    Chunrui Zhang
    Baodong Zheng
    Nonlinear Dynamics, 2012, 70 : 2359 - 2366