Defining the extracellular matrix using proteomics

被引:125
作者
Byron, Adam [1 ]
Humphries, Jonathan D. [1 ]
Humphries, Martin J. [1 ]
机构
[1] Univ Manchester, Fac Life Sci, Wellcome Trust Ctr Cell Matrix Res, Manchester M13 9PT, Lancs, England
基金
英国惠康基金;
关键词
cell adhesion; extracellular matrix; mass spectrometry; proteomics; PROTEIN-INTERACTION PARTNERS; TANDEM MASS-SPECTROMETRY; HUMAN ARTICULAR-CARTILAGE; QUANTITATIVE PROTEOMICS; INTERACTION NETWORK; CELL-CULTURE; LABEL-FREE; INTEGRIN ADHESOME; MARFAN-SYNDROME; MODEL;
D O I
10.1111/iep.12011
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 120 条
[1]   Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation [J].
Abraham, Sheena ;
Riggs, Marion J. ;
Nelson, Kristina ;
Lee, Vladimir ;
Rao, Raj R. .
ACTA BIOMATERIALIA, 2010, 6 (12) :4622-4633
[2]   Development of a Three Dimensional Multiscale Computational Model of the Human Epidermis [J].
Adra, Salem ;
Sun, Tao ;
MacNeil, Sheila ;
Holcombe, Mike ;
Smallwood, Rod .
PLOS ONE, 2010, 5 (01)
[3]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[4]   Unraveling the Human Bone Microenvironment beyond the Classical Extracellular Matrix Proteins: A Human Bone Protein Library [J].
Alves, Rodrigo D. A. M. ;
Demmers, Jeroen A. A. ;
Bezstarosti, Karel ;
van der Eerden, Bram C. J. ;
Verhaar, Jan A. N. ;
Eijken, Marco ;
van Leeuwen, Johannes P. T. M. .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (10) :4725-4733
[5]   Networked-based Characterization of Extracellular Matrix Proteins from Adult Mouse Pulmonary and Aortic Valves [J].
Angel, Peggi M. ;
Nusinow, David ;
Brown, Chris B. ;
Violette, Kate ;
Barnett, Joey V. ;
Zhang, Bing ;
Baldwin, H. Scott ;
Caprioli, Richard M. .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (02) :812-823
[6]   Reorganizing the protein space at the Universal Protein Resource (UniProt) [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Antunes, Ricardo ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bower, Lawrence ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Da Silva, Alan ;
Dimmer, Emily ;
Eberhardt, Ruth ;
Fazzini, Francesco ;
Fedotov, Alexander ;
Garavelli, John ;
Castro, Leyla Garcia ;
Gardner, Michael ;
Hieta, Reija ;
Huntley, Rachael ;
Jacobsen, Julius ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pontikos, Nikolas ;
Pundir, Sangya ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Wardell, Tony ;
Watkins, Xavier ;
Corbett, Matt ;
Donnelly, Mike ;
van Rensburg, Pieter ;
Goujon, Mickael ;
McWilliam, Hamish ;
Lopez, Rodrigo ;
Xenarios, Ioannis ;
Bougueleret, Lydie ;
Bridge, Alan ;
Poux, Sylvain ;
Redaschi, Nicole .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D71-D75
[7]   What mouse mutants teach us about extracellular matrix function [J].
Aszodi, A. ;
Legate, Kyle R. ;
Nakchbandi, I. ;
Faessler, R. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :591-621
[8]   Molecular interactions in the retinal basement membrane system: A proteomic approach [J].
Balasubramani, Manimalha ;
Schreiber, Emanuel M. ;
Candiello, Joseph ;
Balasubramani, G. K. ;
Kurtz, Justin ;
Halfter, Willi .
MATRIX BIOLOGY, 2010, 29 (06) :471-483
[9]   Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of Ischemia/Reperfusion Injury [J].
Barallobre-Barreiro, Javier ;
Didangelos, Athanasios ;
Schoendube, Friedrich A. ;
Drozdov, Ignat ;
Yin, Xiaoke ;
Fernandez-Caggiano, Mariana ;
Willeit, Peter ;
Puntmann, Valentina O. ;
Aldama-Lopez, Guillermo ;
Shah, Ajay M. ;
Domenech, Nieves ;
Mayr, Manuel .
CIRCULATION, 2012, 125 (06) :789-802
[10]   The rationale for targeting the LOX family in cancer [J].
Barker, Holly E. ;
Cox, Thomas R. ;
Erler, Janine T. .
NATURE REVIEWS CANCER, 2012, 12 (08) :540-552