Isolation and characterization of two ABRE-binding proteins: EABF and EABF1 from the oil palm

被引:5
作者
Omidvar, Vahid [1 ,2 ]
Abdullah, Siti Nor Akmar [1 ,2 ]
Ho, Chai Ling [3 ]
Mahmood, Maziah [3 ]
Al-Shanfari, Ahmed Bakhit [1 ,2 ]
机构
[1] Univ Putra Malaysia, Fac Agr, Dept Agr Technol, Serdang 43400, Malaysia
[2] Inst Trop Agr, Lab Plantat Crops, Upm 43400, Selangor, Malaysia
[3] Univ Putra Malaysia, Fac Biotechnol & Biomol Sci, Dept Cell & Mol Biol, Serdang 43400, Malaysia
关键词
Abscisic acid responsive element; Abiotic stress; Transcription factor; Yeast one-hybrid; TRANSCRIPTION FACTOR FAMILY; ABSCISIC-ACID; DROUGHT TOLERANCE; GENE-EXPRESSION; FUNCTIONAL-ANALYSIS; RESPONSIVE ELEMENT; OSMOTIC-STRESS; ABIOTIC STRESS; ABA; COLD;
D O I
10.1007/s11033-012-1758-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abscisic acid (ABA) is an important phytohormone involved in the abiotic stress resistance in plants. The ABA-responsive element (ABRE) binding factors play significant roles in the plant development and response to abiotic stresses, but none so far have been isolated and characterized from the oil palm. Two ABA-responsive cDNA clones, named EABF and EABF1, were isolated from the oil palm fruits using yeast one-hybrid system. The EABF had a conserved AP2/EREBP DNA-binding domain (DNA-BD) and a potential nuclear localization sequence (NLS). No previously known DNA-BD was identified from the EABF1 sequence. The EABF and EABF1 proteins were classified as DREB/CBF and bZIP family members based on the multiple sequence alignment and phylogenetic analysis. Both proteins showed ABRE-binding and transcriptional activation properties in yeast. Furthermore, both proteins were able to trans-activate the down-stream expression of the LacZ reporter gene in yeast. An electrophoretic mobility shift assay revealed that in addition to the ABRE sequence, both proteins could bind to the DRE sequence as well. Transcriptional analysis revealed that the expression of EABF was induced in response to the ABA in the oil palm fruits and leaves, but not in roots, while the EABF1 was constitutively induced in all tissues. The expressions of both genes were strongly induced in fruits in response to the ABA, ethylene, methyl jasmonate, drought, cold and high-salinity treatments, indicating that the EABF and EABF1 might act as connectors among different stress signal transduction pathways. Our results indicate that the EABF and EABF1 are novel stress-responsive transcription factors, which are involved in the abiotic stress response and ABA signaling in the oil palm and could be used for production of stress-tolerant transgenic crops.
引用
收藏
页码:8907 / 8918
页数:12
相关论文
共 48 条
[1]   Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression [J].
Agius, F ;
Amaya, I ;
Botella, MA ;
Valpuesta, V .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (409) :37-46
[2]   Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening [J].
Alexander, L ;
Grierson, D .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (377) :2039-2055
[3]   Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J].
Anderson, JP ;
Badruzsaufari, E ;
Schenk, PM ;
Manners, JM ;
Desmond, OJ ;
Ehlert, C ;
Maclean, DJ ;
Ebert, PR ;
Kazan, K .
PLANT CELL, 2004, 16 (12) :3460-3479
[4]   Protein binding to the abscisic acid-responsive element is independent of VIVIPAROUS1 in vivo [J].
Busk, PK ;
Pagès, M .
PLANT CELL, 1997, 9 (12) :2261-2270
[5]   Regulation of Arabidopsis thaliana Em genes:: role of ABI5 [J].
Carles, C ;
Bies-Etheve, N ;
Aspart, L ;
Léon-Kloosterziel, KM ;
Koornneef, M ;
Echeverria, M ;
Delseny, M .
PLANT JOURNAL, 2002, 30 (03) :373-383
[6]   Over-expression of OsDREB genes lead to enhanced drought tolerance in rice [J].
Chen, Jian-Qiang ;
Meng, Xiu-Ping ;
Zhang, Yun ;
Xia, Mian ;
Wang, Xi-Ping .
BIOTECHNOLOGY LETTERS, 2008, 30 (12) :2191-2198
[7]   Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants [J].
Chinnusamy, V ;
Schumaker, K ;
Zhu, JK .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (395) :225-236
[8]   ABFs, a family of ABA-responsive element binding factors [J].
Choi, HI ;
Hong, JH ;
Ha, JO ;
Kang, JY ;
Kim, SY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1723-1730
[9]   Integration of abscisic acid signalling into plant responses [J].
Christmann, A. ;
Moes, D. ;
Himmelbach, A. ;
Yang, Y. ;
Tang, Y. ;
Grill, E. .
PLANT BIOLOGY, 2006, 8 (03) :314-325
[10]   Quantitative trait loci and crop performance under abiotic stress: Where do we stand? [J].
Collins, Nicholas C. ;
Tardieu, Francois ;
Tuberosa, Roberto .
PLANT PHYSIOLOGY, 2008, 147 (02) :469-486