Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition

被引:63
作者
Collins, Kevin M. [1 ,2 ]
Bode, Addys [1 ]
Fernandez, Robert W. [2 ]
Tanis, Jessica E. [2 ,4 ]
Brewer, Jacob C. [2 ]
Creamer, Matthew S. [3 ,5 ]
Koelle, Michael R. [2 ,3 ]
机构
[1] Univ Miami, Dept Biol, Coral Gables, FL 33124 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[3] Yale Univ, Interdept Neurosci Program, New Haven, CT USA
[4] Univ Delaware, Dept Biol Sci, Newark, DE USA
[5] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT USA
来源
ELIFE | 2016年 / 5卷
关键词
CAENORHABDITIS-ELEGANS; NEURONAL CIRCUITS; PROTEIN FUNCTION; NERVOUS-SYSTEM; SEROTONIN; RECEPTOR; CHANNEL; G(Q)ALPHA; PATHWAY; STATES;
D O I
10.7554/eLife.21126
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states.
引用
收藏
页数:24
相关论文
共 59 条
  • [21] SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying
    Hobson, RJ
    Hapiak, VM
    Xiao, H
    Buehrer, KL
    Komuniecki, PR
    Komuniecki, RW
    [J]. GENETICS, 2006, 172 (01) : 159 - 169
  • [22] A Neuropeptide-Mediated Stretch Response Links Muscle Contraction to Changes in Neurotransmitter Release
    Hu, Zhitao
    Pym, Edward C. G.
    Babu, Kavita
    Murray, Amy B. Vashlishan
    Kaplan, Joshua M.
    [J]. NEURON, 2011, 71 (01) : 92 - 102
  • [23] Behavioral defects in C-elegans egl-36 mutants result from potassium channels shifted in voltage-dependence of activation
    Johnstone, DB
    Wei, AG
    Butler, A
    Salkoff, L
    Thomas, JH
    [J]. NEURON, 1997, 19 (01) : 151 - 164
  • [24] Jose AM, 2007, GENETICS, V175, P93, DOI 10.1534/genetics.106.065516
  • [25] The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle,function in Caenorhabditis elegans
    Jospin, M
    Jacquemond, V
    Mariol, MC
    Ségalat, L
    Allard, B
    [J]. JOURNAL OF CELL BIOLOGY, 2002, 159 (02) : 337 - 347
  • [26] Phospholipase Cε regulates ovulation in Caenorhabditis elegans
    Kariya, K
    Bui, YK
    Gao, XL
    Sternberg, PW
    Kataoka, T
    [J]. DEVELOPMENTAL BIOLOGY, 2004, 274 (01) : 201 - 210
  • [27] Kim J, 2001, GENETICS, V157, P1599
  • [28] EGL-10 regulates G protein signaling in the C-elegans nervous system and shares a conserved domain with many mammalian proteins
    Koelle, MR
    Horvitz, HR
    [J]. CELL, 1996, 84 (01) : 115 - 125
  • [29] Mutations in the alpha 1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans
    Lee, RYN
    Lobel, L
    Hengartner, M
    Horvitz, HR
    Avery, L
    [J]. EMBO JOURNAL, 1997, 16 (20) : 6066 - 6076
  • [30] LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans
    Li, Pengpeng
    Collins, Kevin M.
    Koelle, Michael R.
    Shen, Kang
    [J]. ELIFE, 2013, 2