Structural and optical characteristic of chalcone doped ZnO nanoparticles

被引:16
作者
Modwi, A. [1 ]
Ali, M. K. M. [2 ]
Taha, Kamal K. [1 ,3 ]
Ibrahem, M. A. [2 ]
El-Khair, H. M. [4 ,5 ]
Eisa, M. H. [2 ]
Elamin, M. R. [1 ]
Aldaghri, O. [2 ]
Alhathlool, Raed [2 ]
Ibnaouf, K. H. [2 ,5 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Chem, POB 90950, Riyadh 11623, Saudi Arabia
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Phys, Coll Sci, POB 90950, Riyadh 11623, Saudi Arabia
[3] Univ Bahri, Coll Appl & Ind Chem, Khartoum, Sudan
[4] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Phys, Coll Sci, Comm Radiat & Environm Pollut Protect, POB 90950, Riyadh 11623, Saudi Arabia
[5] Alneelain Univ, Sch Phys, Fac Sci & Technol, POB 12702, Khartoum 11121, Sudan
关键词
SOL-GEL METHOD; ADSORPTION; SUBSTRATE; CRYSTAL; GREEN; BLUE; FILM;
D O I
10.1007/s10854-017-8207-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work was conducted primarily to study the structural and optical properties of a chalcone doped ZnO nanoparticles. These nanomaterials were fabricated for the first time by means of a facile method. The X-ray diffraction, Scanning electron microscope, FTIR spectroscopy and diffuse reflection spectra have been used for characterization. The doped specimens showed hexagonal wurtzite structure with high purity phase, whereas the morphology of spherical ZnO was slightly distorted after doping. The vibration band of ZnO at 438.57 cm(-1) was shifted to the higher wave number of 443.51 and 449.28 cm(-1) for the dopant 0.5 and 1.5%, respectively. Loading the chalcone on ZnO has resulted in shifting the absorption edge of ZnO to the visible region and decreased the energy band gap.
引用
收藏
页码:2791 / 2796
页数:6
相关论文
共 33 条
[11]   Ga-doped ZnO for adsorption of heavy metals from aqueous solution [J].
Ghiloufi, I. ;
El Ghoul, J. ;
Modwi, A. ;
El Mir, L. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 42 :102-106
[12]   Chalcones: An update on cytotoxic and chemoprotective properties [J].
Go, ML ;
Wu, X ;
Liu, XL .
CURRENT MEDICINAL CHEMISTRY, 2005, 12 (04) :483-499
[13]   Combustion synthesis of doped nanocrystalline ZnO powders for varistors applications [J].
Hembram, K. ;
Sivaprahasam, D. ;
Rao, T. N. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2011, 31 (10) :1905-1913
[14]   CO sensing properties of Ga-doped ZnO prepared by sol-gel route [J].
Hjiri, M. ;
Dhahri, R. ;
El Mir, L. ;
Bonavita, A. ;
Donato, N. ;
Leonardi, S. G. ;
Neri, G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 634 :187-192
[15]   Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis [J].
Kant, Shashi ;
Pathania, Deepak ;
Singh, Pardeep ;
Dhiman, Pooja ;
Kumar, Amit .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :340-352
[16]   Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver [J].
Kuang, Huijuan ;
Yang, Pengfei ;
Yang, Lin ;
Aguilar, Zoraida P. ;
Xu, Hengyi .
JOURNAL OF HAZARDOUS MATERIALS, 2016, 317 :119-126
[17]   Conformation-mediated Forster resonance energy transfer (FRET) in blue-emitting polyvinylpyrrolidone (PVP)-passivated zinc oxide (ZnO) nanoparticles [J].
Kurt, Hasan ;
Alpaslan, Ece ;
Yildiz, Burcin ;
Taralp, Alpay ;
Ow-Yang, Cleva W. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 488 :348-355
[18]   Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells [J].
Liu, Zhifeng ;
Liu, Chengcheng ;
Ya, Jing ;
Lei, E. .
RENEWABLE ENERGY, 2011, 36 (04) :1177-1181
[19]   Co-precipitation synthesis and gas-sensing properties of ZnO hollow sphere with porous shell [J].
Meng, Fan ;
Yin, Jing ;
Duan, Yue-Qin ;
Yuan, Zhi-Hao ;
Bie, Li-Jian .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 156 (02) :703-708
[20]   Effect of annealing on physicochemical and photocatalytic activity of Cu5% loading on ZnO synthesized by sol-gel method [J].
Modwi, A. ;
Abbo, M. A. ;
Hassan, E. A. ;
Houas, Ammar .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (12) :12974-12984