Well-posedness for regularized nonlinear dispersive wave equations

被引:18
作者
Bona, Jerry L. [1 ]
Chen, HongQiu [1 ,2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
nonlinear dispersive wave equations; regularized equation; LONG WAVES; MODEL-EQUATIONS; INTERNAL WAVES; SYSTEMS;
D O I
10.3934/dcds.2009.23.1253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this essay, we study the initial-value problem u(t) + u(x) + g(u)(x) + Lu(t) = 0, x is an element of R, t > 0, u(x,0) = u(0)(x), x is an element of R} (0.1) where u=u(x,t) is a real-valued function, L is a Fourier multiplier operator with real symbol alpha(xi), say, and g is a smooth, real-valued function of a real variable. Equations of this form arise as models of wave propagation in a variety of physical contexts. Here, fundamental issues of local and global well posedness are established for L(p), H(s) and bore-like or kink-like initial data. In the special case where alpha(xi) = vertical bar xi vertical bar(r) wherein r > 1 and g(u) = 1/2 u(2), (0.1) is globally well-posed in time if s and r satisfy a simple algebraic relation.
引用
收藏
页码:1253 / 1275
页数:23
相关论文
共 12 条
[1]  
Albert J., 1991, J NONLINEAR SCI, V1, P345
[2]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[3]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[4]  
Bona J. L., 2009, DISCRTE CONT DYNAMIC, V23, P1237
[5]  
Bona J. L., 1994, Differ. Integral Equ. Appl., V7, P699
[6]  
BONA JL, 1973, P CAMB PHILOS SOC, V73, P391
[7]   TRAVELING-WAVE SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION [J].
BONA, JL ;
SCHONBEK, ME .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 101 :207-226
[8]  
BONA JL, 1995, LECT NOTES PURE APPL, V168, P65
[9]  
Kalisch H, 2000, DISCRET CONTIN DYN S, V6, P1
[10]   CALCULATIONS OF DEVELOPMENT OF AN UNDULAR BORE [J].
PEREGRINE, DH .
JOURNAL OF FLUID MECHANICS, 1966, 25 :321-+