Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

被引:44
作者
Cottrill, Anton L. [1 ]
Wang, Song [1 ,2 ]
Liu, Albert Tianxiang [1 ]
Wang, Wen-Jun [2 ]
Strano, Michael S. [1 ]
机构
[1] MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
关键词
phase change materials; thermal diodes; thermal rectification; thermal transport; TRANSITION TEMPERATURES; COMPOSITES; WATER; RECTIFIER; SCALE;
D O I
10.1002/aenm.201702692
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.
引用
收藏
页数:11
相关论文
共 44 条
[1]  
Agrawal KV, 2017, NAT NANOTECHNOL, V12, P267, DOI [10.1038/nnano.2016.254, 10.1038/NNANO.2016.254]
[2]   Thermal conductivity measurements in phase change materials under freezing in presence of nanoinclusions [J].
Angayarkanni, S. A. ;
Philip, John .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (09)
[3]   HEAT-FLUX RECTIFICATION IN TIN-ALPHA-BRASS SYSTEM [J].
BALCEREK, K ;
TYC, T .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1978, 47 (02) :K125-K128
[4]   Phase-change radiative thermal diode [J].
Ben-Abdallah, Philippe ;
Biehs, Svend-Age .
APPLIED PHYSICS LETTERS, 2013, 103 (19)
[5]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[6]   Planar jumping-drop thermal diodes [J].
Boreyko, Jonathan B. ;
Zhao, Yuejun ;
Chen, Chuan-Hua .
APPLIED PHYSICS LETTERS, 2011, 99 (23)
[7]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[8]   Controllable Thermal Rectification Realized in Binary Phase Change Composites [J].
Chen, Renjie ;
Cui, Yalong ;
Tian, He ;
Yao, Ruimin ;
Liu, Zhenpu ;
Shu, Yi ;
Li, Cheng ;
Yang, Yi ;
Ren, Tianling ;
Zhang, Gang ;
Zou, Ruqiang .
SCIENTIFIC REPORTS, 2015, 5
[9]   Analysis of Thermal Diodes Enabled by Junctions of Phase Change Materials [J].
Cottrill, Anton L. ;
Strano, Michael S. .
ADVANCED ENERGY MATERIALS, 2015, 5 (23)
[10]   Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires [J].
Faulkner, MG ;
Amalraj, JJ ;
Bhattacharyya, A .
SMART MATERIALS & STRUCTURES, 2000, 9 (05) :632-639