Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression

被引:8
作者
Yu, Christina Y. [1 ,2 ]
Xiang, Shunian [3 ,4 ]
Huang, Zhi [2 ,5 ]
Johnson, Travis S. [1 ,2 ]
Zhan, Xiaohui [2 ,4 ]
Han, Zhi [2 ,6 ]
Abu Zaid, Mohammad [2 ]
Huang, Kun [2 ,6 ]
机构
[1] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Indiana Univ Sch Med, Dept Med, Indianapolis, IN 46202 USA
[3] Indiana Univ, Dept Med & Mol Genet, Indianapolis, IN 46204 USA
[4] Shenzhen Univ, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Sch Biomed Engn,Hlth Sci Ctr, Shenzhen, Peoples R China
[5] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[6] Regenstrief Inst Hlth Care, Indianapolis, IN 46202 USA
关键词
multiple myeloma; MGUS; SMM; gene co-expression; copy number variation; MONOCLONAL GAMMOPATHY; MOLECULAR CLASSIFICATION; C-MYC; EXPRESSION; MGUS; MAX; IDENTIFICATION; PROGNOSIS;
D O I
10.3389/fgene.2019.00468
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Multiple myeloma (MM) has two clinical precursor stages of disease: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the mechanism of progression is not well understood. Because gene co-expression network analysis is a well-known method for discovering new gene functions and regulatory relationships, we utilized this framework to conduct differential co-expression analysis to identify interesting transcription factors (TFs) in two publicly available datasets. We then used copy number variation (CNV) data from a third public dataset to validate these TFs. First, we identified co-expressed gene modules in two publicly available datasets each containing three conditions: normal, MGUS, and SMM. These modules were assessed for condition-specific gene expression, and then enrichment analysis was conducted on condition-specific modules to identify their biological function and upstream TFs. TFs were assessed for differential gene expression between normal and MM precursors, then validated with CNV analysis to identify candidate genes. Functional enrichment analysis reaffirmed known functional categories in MM pathology, the main one relating to immune function. Enrichment analysis revealed a handful of differentially expressed TFs between normal and either MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes of interest (MAX, TCF4, ZNF148, and ZNF281) that aid in our understanding of MM initiation and progression.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Role of tumor suppressor p53 and micro-RNA interplay in multiple myeloma pathogenesis [J].
Abdi, Jahangir ;
Rastgoo, Nasrin ;
Li, Lihong ;
Chen, Wenming ;
Chang, Hong .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2017, 10
[2]   TumorBoost: Normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays [J].
Bengtsson, Henrik ;
Neuvial, Pierre ;
Speed, Terence P. .
BMC BIOINFORMATICS, 2010, 11
[3]   Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients [J].
Broyl, Annemiek ;
Hose, Dirk ;
Lokhorst, Henk ;
de Knegt, Yvonne ;
Peeters, Justine ;
Jauch, Anna ;
Bertsch, Uta ;
Buijs, Arjan ;
Stevens-Kroef, Marian ;
Beverloo, H. Berna ;
Vellenga, Edo ;
Zweegman, Sonja ;
Kersten, Marie-Josee ;
van der Holt, Bronno ;
el Jarari, Laila ;
Mulligan, George ;
Goldschmidt, Hartmut ;
van Duin, Mark ;
Sonneveld, Pieter .
BLOOD, 2010, 116 (14) :2543-2553
[4]   Clinical significance of TP53 mutation in myeloma [J].
Chng, W. J. ;
Price-Troska, T. ;
Gonzalez-Paz, N. ;
Van Wier, S. ;
Jacobus, S. ;
Blood, E. ;
Henderson, K. ;
Oken, M. ;
Van Ness, B. ;
Greipp, P. ;
Rajkumar, S. V. ;
Fonseca, R. .
LEUKEMIA, 2007, 21 (03) :582-584
[5]   Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling [J].
Chng, Wee J. ;
Kumar, Shaji ;
VanWier, Scott ;
Ahmann, Greg ;
Price-Troska, Tammy ;
Henderson, Kim ;
Chung, Tae-Hoon ;
Kim, Seungchan ;
Mulligan, George ;
Bryant, Barbara ;
Carpten, John ;
Gertz, Morie ;
Rajkumar, S. Vincent ;
Lacy, Martha ;
Dispenzieri, Angela ;
Kyle, Robert ;
Greipp, Philip ;
Bergsagel, P. Leif ;
Fonseca, Rafael .
CANCER RESEARCH, 2007, 67 (07) :2982-2989
[6]   Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis [J].
Davies, FE ;
Dring, AM ;
Li, C ;
Rawstron, AC ;
Shammas, MA ;
O'Connor, SM ;
Fenton, JAL ;
Hideshima, T ;
Chauhan, D ;
Tai, IT ;
Robinson, E ;
Auclair, D ;
Rees, K ;
Gonzalez, D ;
Ashcroft, AJ ;
Dasgupta, R ;
Mitsiades, C ;
Mitsiades, N ;
Chen, LB ;
Wong, WH ;
Munshi, NC ;
Morgan, GJ ;
Anderson, KC .
BLOOD, 2003, 102 (13) :4504-4511
[7]   Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120) [J].
Dhodapkar, Madhav V. ;
Sexton, Rachael ;
Waheed, Sarah ;
Usmani, Saad ;
Papanikolaou, Xenofon ;
Nair, Bijay ;
Petty, Nathan ;
Shaughnessy, John D., Jr. ;
Hoering, Antje ;
Crowley, John ;
Orlowski, Robert Z. ;
Barlogie, Bart .
BLOOD, 2014, 123 (01) :78-85
[8]   Pathway-based network analysis of myeloma tumors: monoclonal gammopathy of unknown significance, smoldering multiple myeloma, and multiple myeloma [J].
Dong, L. ;
Chen, C. Y. ;
Ning, B. ;
Xu, D. L. ;
Gao, J. H. ;
Wang, L. L. ;
Yan, S. Y. ;
Cheng, S. .
GENETICS AND MOLECULAR RESEARCH, 2015, 14 (03) :9571-9584
[9]  
GARCIA SB, 2017, BLOOD S1, V130
[10]   A matrix rank based concordance index for evaluating and detecting conditional specific co-expressed gene modules [J].
Han, Zhi ;
Zhang, Jie ;
Sun, Guoyuan ;
Liu, Gang ;
Huang, Kun .
BMC GENOMICS, 2016, 17