On the codimension growth of finite-dimensional Lie algebras

被引:14
|
作者
Giambruno, A
Regev, A
Zaicev, M
机构
[1] Univ Palermo, Dipartimento Matemat, I-90123 Palermo, Italy
[2] Penn State Univ, Dept Math, State Coll, PA 16802 USA
[3] Weizmann Inst Sci, Dept Theoret Math, IL-76100 Rehovot, Israel
[4] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119899, Russia
关键词
D O I
10.1006/jabr.1999.7933
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the exponential growth of the codimensions c(n)(L) of a finite-dimensional Lie algebra L over a field of characteristic zero. We show that if the solvable radical of L is nilpotent then lim(n-->infinity)(n)root c(n)(L) exists and is an integer. (C) 1999 Academic Press.
引用
收藏
页码:466 / 474
页数:9
相关论文
共 50 条