Gaussian asymptotic properties of the sum-of-digits function

被引:16
作者
Dumont, JM [1 ]
Thomas, A [1 ]
机构
[1] INST MATH LUMINY,UNITE PROPRE RECH 9016,F-13288 MARSEILLE 9,FRANCE
关键词
D O I
10.1006/jnth.1997.2044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will show that the sum-of-digits function has an asymptotic Gaussian behaviour, and we deduce some new summational formulae. More precisely we consider numeration systems relative to substitutive bases, whose general case contains among others the case of Parry linear recurrent bases (as the Fibonacci sequence for instance). (C) 1997 Academic Press.
引用
收藏
页码:19 / 38
页数:20
相关论文
共 11 条
[1]  
[Anonymous], 1968, An introduction to probability theory and its applications
[2]   HOW TO WRITE INTEGERS IN A BASE WHICH IS NOT INTEGRAL [J].
BERTRANDMATHIS, A .
ACTA MATHEMATICA HUNGARICA, 1989, 54 (3-4) :237-241
[3]  
DRMOTA M, PARITY ZECKENDORF SU
[4]   DIGITAL SUM MOMENTS AND SUBSTITUTIONS [J].
DUMONT, JM ;
THOMAS, A .
ACTA ARITHMETICA, 1993, 64 (03) :205-225
[5]   NUMBERING SYSTEMS AND FRACTAL FUNCTIONS RELATED TO SUBSTITUTIONS [J].
DUMONT, JM ;
THOMAS, A .
THEORETICAL COMPUTER SCIENCE, 1989, 65 (02) :153-169
[6]   DIGITAL SUM PROBLEMS AND SUBSTITUTIONS ON A FINITE ALPHABET [J].
DUMONT, JM ;
THOMAS, A .
JOURNAL OF NUMBER THEORY, 1991, 39 (03) :351-366
[7]  
DUMONT JM, 1990, SPRINGER P PHYSICS, V47, P185
[8]  
DUMONT JM, SUBSTITUTIVE NUMERAT
[9]   ALPHA-EXPANSIONS, LINEAR RECURRENCES, AND THE SUM-OF-DIGITS FUNCTION [J].
GRABNER, PJ ;
TICHY, RF .
MANUSCRIPTA MATHEMATICA, 1991, 70 (03) :311-324
[10]   A CORRELATED DIGITAL SUM PROBLEM ASSOCIATED WITH SUMS OF 3 SQUARES [J].
OSBALDESTIN, AH ;
SHIU, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 :369-374