Homeomorphism flows for non-Lipschitz stochastic differential equations with jumps

被引:15
作者
Qiao, Huijie [2 ]
Zhang, Xicheng [1 ,2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Hubei, Peoples R China
基金
澳大利亚研究理事会;
关键词
Homeomorphism flow; SDEs with jumps; Non-Lipschitz; Exponential martingale;
D O I
10.1016/j.spa.2007.12.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the continuity property as well as the homeomorphism property for the solutions of multidimensional stochastic differential equations with jumps and non-Lipschitz coefficients with respect to the initial values. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2254 / 2268
页数:15
相关论文
共 15 条
[1]   Modulus of continuity of the canonic Brownian motion "on the group of diffeomorphisms of the circle" [J].
Airault, H ;
Ren, JG .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (02) :395-426
[2]   Isotropic stochastic flow of homeomorphisms on Sd for the critical Sobolev exponent [J].
Fang, SZ ;
Zhang, TS .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (04) :580-597
[3]   STOCHASTIC DIFFERENTIAL-EQUATIONS OF JUMP TYPE AND LEVY PROCESSES IN DIFFEOMORPHISMS GROUP [J].
FUJIWARA, T ;
KUNITA, H .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1985, 25 (01) :71-106
[4]  
Ikeda N., 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[5]  
Kunita H., 1984, Lecture Notes in Math., V1097, P143, DOI DOI 10.1007/BFB0099433
[6]  
Kunita H., 1996, STOCHASTIC DIFFERENT, P197
[7]  
Le Jan Y, 2002, ANN PROBAB, V30, P826
[8]   The canonic diffusion above the diffeomorphism group of the circle [J].
Malliavin, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04) :325-329
[9]  
Protter P. E., NO ARBITRAGE GEN SEM
[10]  
Protter P. E., 2004, STOCHASTIC INTEGRATI, V2