Molecular size as the main determinant of solute maximum flux across the skin

被引:191
作者
Magnusson, BM [1 ]
Anissimov, YG [1 ]
Cross, SE [1 ]
Roberts, MS [1 ]
机构
[1] Univ Queensland, Princess Alexandra Hosp, Dept Med, Therapeut Res Unit, Brisbane, Qld 4102, Australia
基金
英国医学研究理事会;
关键词
maximum flux; prediction; structure-activity relation ship; transdermal penetration;
D O I
10.1111/j.0022-202X.2004.22413.x
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
One of the most important determinants of dermatological and systemic penetration after topical application is the delivery or flux of solutes into or through the skin. The maximum dose of solute able to be delivered over a given period of time and area of application is defined by its maximum flux (J(max), mol per cm(2) per h) from a given vehicle. In this work, J(max) values from aqueous solution across human skin were acquired or estimated from experimental data and correlated with solute physicochemical properties. Whereas epidermal permeability coefficients (k(p)) are optimally correlated to solute octanol-water partition coefficient (K-ow) and molecular weight (MW) was found to be the dominant determinant of J(max) for this literature data set: log J(max)=-3.90-0.0190MW (n=87, r(2)=0.847, p<0.001). Estimated solubility in octanol (S-oc) was also a determinant, but improvement in the regression by the addition of log S-oc was small (r(2) increased to 0.856). Addition of other physicochemical parameters to MW by forward stepwise regression only marginally improved the regression with a melting point (Mpt) term (r(2)=0.879) and then hydrogen bonding acceptor capability (H-a) (r(2)=0.917) is significant. Validation of the equation above was carried with a number of other data sets: an aqueous vehicle with full- and split-thickness skin (r(2)=0.784, n=56), some pure solutes (r(2)=0.537, n=34), an aqueous vehicle with ionizable solutes (r(2)=0.282, n=54) and solutes from a propylene glycol vehicle (r(2)=0.484, n=36). An analysis of the entire database gave the equation log J(max)=-4.52-0.0141MW (n=278, r(2)=0.688, p<0.001), with inclusion of Mpt and H-a increasing r(2) to 0.760 (n=269). Separate analysis of full- and split-thickness skin data confirmed that the dermal resistance term had only a marginal effect on overall J(max). Application of the latter model to an in vivo situation where the dermal capillary bed is slightly below the epidermal-dermal junction revealed that the dermal resistance term was unnecessary for in vivo predictions for most solutes.
引用
收藏
页码:993 / 999
页数:7
相关论文
共 85 条