Linear parabolic equations in locally uniform spaces

被引:70
作者
Arrieta, JM [1 ]
Rodriguez-Bernal, A
Cholewa, JW
Dlotko, T
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, Madrid 28040, Spain
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
关键词
uniform spaces; heat equation; Schrodinger semigroup; analytic semigroups; Lp - L-q estimates; regularizing effect; exponential type;
D O I
10.1142/S0218202504003234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the linear theory of parabolic equations in uniform spaces. We obtain sharp L-p - L-q-type estimates in uniform spaces for heat and Schrodinger semigroups and analyze the regularizing effect and the exponential type of these semigroups. We also deal with general second-order elliptic operators and study the generation of analytic semigoups in uniform spaces.
引用
收藏
页码:253 / 293
页数:41
相关论文
共 36 条
[31]   The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors [J].
Mielke, A .
NONLINEARITY, 1997, 10 (01) :199-222
[32]   ATTRACTORS FOR MODULATION EQUATIONS ON UNBOUNDED-DOMAINS - EXISTENCE AND COMPARISON [J].
MIELKE, A ;
SCHNEIDER, G .
NONLINEARITY, 1995, 8 (05) :743-768
[33]  
PAZY A, 1983, SEMIGROUPS LINEAR AP
[34]   SCHODINGER SEMIGROUPS [J].
SIMON, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (03) :447-526
[35]  
Triebel H., 1978, North-Holland Mathematical Library
[36]   HIGHER DIMENSIONAL BLOW UP FOR SEMILINEAR PARABOLIC EQUATIONS [J].
VELAZQUEZ, JJL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (9-10) :1567-1596