Hausdorff dimension of the level sets of self-affine functions

被引:1
作者
Peng, Li [1 ]
Kamae, Teturo [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Osaka City Univ, Adv Math Inst, Osaka 5588585, Japan
关键词
Hausdorff dimension; Level sets; Self-affine sets; Deterministic Brownian motion; BROWNIAN-MOTION; FRACTALS;
D O I
10.1016/j.jmaa.2014.10.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a partition of [0, 1] by closed intervals I-1 boolean OR ... boolean OR I-k = [0,1] with k >= 2. Given 0 < alpha < 1 and closed intervals J(i) (i = 1, ... ,k) with vertical bar I-j vertical bar = vertical bar J(j)vertical bar(alpha). Given tau(1), ... ,tau(k) is an element of {0,1}. Let Omega subset of [0,1] x [0,1] be the compact set satisfying that Omega = U-i=1(k)(phi I-i,1 x phi J(i),tau(i))(Omega) where for an interval I = [a, b] subset of [0, 1] and tau is an element of {-1, 1}, phi(I,tau) : [0,1] -> I is the linear map such that phi(I,1)(0)= a, phi(I,,1)(1) = b and phi(I,,-1) (0)= b, phi(I,,-1) (1) = a. Such Omega is a graph of a Sorel function f(Omega) almost surely and is called a self-affine set of alpha-function type. We obtain the Hausdorff dimension of the level set Omega(y) = {x; (x, y) is an element of Omega} in the case that lambda o f(Omega)(-1) has a bounded density with respect to lambda, where lambda is the Lebesgue measure on [0, 1]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1400 / 1409
页数:10
相关论文
共 13 条
[1]   Slicing the Sierpinski gasket [J].
Barany, Balazs ;
Ferguson, Andrew ;
Simon, Karoly .
NONLINEARITY, 2012, 25 (06) :1753-1770
[2]   Classification of refinable splines [J].
Dai, XR ;
Feng, DJ ;
Wang, Y .
CONSTRUCTIVE APPROXIMATION, 2006, 24 (02) :187-200
[3]  
Falconer K., 2003, FRACTAL GEOMETRY, DOI DOI 10.1002/0470013850
[4]   THE DIMENSION OF SELF-AFFINE FRACTALS .2. [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :169-179
[5]   Dimension Theory of Iterated Function Systems [J].
Feng, De-Jun ;
Hu, Huyi .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) :1435-1500
[6]   Some dimensional results for homogeneous Moran sets [J].
Feng, DJ ;
Wen, ZY ;
Wu, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (05) :475-482
[7]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[8]   Stochastic analysis based on deterministic Brownian motion [J].
Kamae, T .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 125 (1) :317-346
[9]  
Kempton Tom, SETS BETA EXPANSIONS
[10]  
Manning A, 2013, T AM MATH SOC, V365, P213