Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops

被引:89
作者
Wan, Hongjian [1 ,2 ]
Yuan, Wei [2 ]
Bo, Kailiang [1 ]
Shen, Jia [1 ]
Pang, Xin [1 ]
Chen, Jinfeng [1 ]
机构
[1] Nanjing Agr Univ, Coll Hort, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
[2] Zhejiang Acad Agr Sci, Inst Vegetables, Hangzhou 310021, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
NBS-LRR; Cucumber; Cucurbitaceae; Phylogenetic relationship; RICH REPEAT GENES; MILDEW RESISTANCE; PATHOGEN RESISTANCE; INTROGRESSION LINE; IDENTIFICATION; DIVERSITY; ANALOGS; HOMOLOGS; REVEALS; CANDIDATES;
D O I
10.1186/1471-2164-14-109
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Plant nucleotide-binding site (NBS)-leucine-rich repeat (LRR) proteins encoded by resistance genes play an important role in the responses of plants to various pathogens, including viruses, bacteria, fungi, and nematodes. In this study, a comprehensive analysis of NBS-encoding genes within the whole cucumber genome was performed, and the phylogenetic relationships of NBS-encoding resistance gene homologues (RGHs) belonging to six species in five genera of Cucurbitaceae crops were compared. Results: Cucumber has relatively few NBS-encoding genes. Nevertheless, cucumber maintains genes belonging to both Toll/interleukine-1 receptor (TIR) and CC (coiled-coil) families. Eight commonly conserved motifs have been established in these two families which support the grouping into TIR and CC families. Moreover, three additional conserved motifs, namely, CNBS-1, CNBS-2 and TNBS-1, have been identified in sequences from CC and TIR families. Analyses of exon/intron configurations revealed that some intron loss or gain events occurred during the structural evolution between the two families. Phylogenetic analyses revealed that gene duplication, sequence divergence, and gene loss were proposed as the major modes of evolution of NBS-encoding genes in Cucurbitaceae species. Compared with NBS-encoding sequences from the Arabidopsis thaliana genome, the remaining seven TIR familes of NBS proteins and RGHs from Cucurbitaceae species have been shown to be phylogenetically distinct from the TIR family of NBS-encoding genes in Arabidopsis, except for two subfamilies (TIR4 and TIR9). On the other hand, in the CC-NBS family, they grouped closely with the CC family of NBS-encoding genes in Arabidopsis. Thus, the NBS-encoding genes in Cucurbitaceae crops are shown to be ancient, and NBS-encoding gene expansions (especially the TIR family) may have occurred before the divergence of Cucurbitaceae and Arabidopsis. Conclusion: The results of this paper will provide a genomic framework for the further isolation of candidate disease resistance NBS-encoding genes in cucumber, and contribute to the understanding of the evolutionary mode of NBS-encoding genes in Cucurbitaceae crops.
引用
收藏
页数:15
相关论文
共 59 条
[1]  
Abul-Hayja ZM, 1975, THESIS U WISCONSIN M, P149
[2]   Identification and characterization of nucleotide-binding site-Leucine-rich repeat genes in the model plant Medicago truncatul [J].
Ameline-Torregrosa, Carine ;
Wang, Bing-Bing ;
O'Bleness, Majesta S. ;
Deshpande, Shweta ;
Zhu, Hongyan ;
Roe, Bruce ;
Young, Nevin D. ;
Cannon, Steven B. .
PLANT PHYSIOLOGY, 2008, 146 (01) :5-21
[3]   Diversity in nucleotide binding site-leucine-rich repeat genes in cereals [J].
Bai, JF ;
Pennill, LA ;
Ning, JC ;
Lee, SW ;
Ramalingam, J ;
Webb, CA ;
Zhao, BY ;
Sun, Q ;
Nelson, JC ;
Leach, JE ;
Hulbert, SH .
GENOME RESEARCH, 2002, 12 (12) :1871-1884
[4]   Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance [J].
Brotman, Y ;
Silberstein, L ;
Kovalski, I ;
Perin, C ;
Dogimont, C ;
Pitrat, M ;
Klingler, J ;
Thompson, GA ;
Perl-Treves, R .
THEORETICAL AND APPLIED GENETICS, 2002, 104 (6-7) :1055-1063
[5]  
Cannon SB, 2002, J MOL EVOL, V54, P548, DOI [10.1007/s00239-001-0057-2, 10.1007/s0023901-0057-2]
[6]  
Chen J. F., 2004, Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding, Olomouc, Czech Republic, 12-17 July, 2004, P189
[7]  
Chen J. F., 2000, CUCURBIT GENET COOP, V23, P32
[8]   Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize [J].
Cheng, Ying ;
Li, Xiaoyu ;
Jiang, Haiyang ;
Ma, Wei ;
Miao, Weiyun ;
Yamada, Toshihiko ;
Zhang, Ming .
FEBS JOURNAL, 2012, 279 (13) :2431-2443
[9]   Plant pathogens and integrated defence responses to infection [J].
Dangl, JL ;
Jones, JDG .
NATURE, 2001, 411 (6839) :826-833
[10]   Structure and function of proteins controlling strain-specific pathogen resistance in plants [J].
Ellis, J ;
Jones, D .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (04) :288-293